Nuprl Lemma : no_repeats-update-alist
∀[A,T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[a:A]. ∀[f:A ⟶ A]. ∀[L:(T × A) List].
  no_repeats(T;map(λp.(fst(p));update-alist(eq;L;x;a;n.f[n]))) supposing no_repeats(T;map(λp.(fst(p));L))
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l), 
update-alist: update-alist(eq;L;x;z;v.f[v]), 
map: map(f;as), 
list: T List, 
deq: EqDecider(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
pi1: fst(t), 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
deq: EqDecider(T), 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
squash: ↓T, 
less_than: a < b, 
sq_type: SQType(T), 
it: ⋅, 
nil: [], 
colength: colength(L), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
less_than': less_than'(a;b), 
le: A ≤ B, 
cons: [a / b], 
pi1: fst(t), 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda3, 
update-alist: update-alist(eq;L;x;z;v.f[v]), 
or: P ∨ Q, 
guard: {T}, 
prop: ℙ, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
uimplies: b supposing a, 
ge: i ≥ j , 
false: False, 
implies: P ⇒ Q, 
nat: ℕ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
cand: A c∧ B, 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
eqof: eqof(d), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True
Lemmas referenced : 
istype-universe, 
deq_wf, 
istype-nat, 
list_wf, 
ifthenelse_wf, 
list_ind_cons_lemma, 
le_wf, 
decidable__le, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermAdd_wf, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__equal_int, 
spread_cons_lemma, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
subtract-1-ge-0, 
update-alist_wf, 
pi1_wf, 
map_wf, 
istype-le, 
istype-void, 
colength_wf_list, 
colength-cons-not-zero, 
product_subtype_list, 
no_repeats_wf, 
nil_wf, 
cons_wf, 
no_repeats_singleton, 
map_cons_lemma, 
list_ind_nil_lemma, 
map_nil_lemma, 
list-cases, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
no_repeats_witness, 
istype-less_than, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
equal_wf, 
no_repeats_cons, 
l_member_wf, 
bnot_wf, 
not_wf, 
eqof_wf, 
istype-assert, 
uiff_transitivity, 
eqtt_to_assert, 
safe-assert-deq, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
squash_wf, 
true_wf, 
member-update-alist1
Rules used in proof : 
universeEquality, 
functionIsType, 
independent_pairEquality, 
spreadEquality, 
sqequalBase, 
intEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
imageElimination, 
instantiate, 
applyEquality, 
productIsType, 
dependent_set_memberEquality_alt, 
because_Cache, 
equalityIstype, 
productElimination, 
hypothesis_subsumption, 
promote_hyp, 
unionElimination, 
productEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
isectIsTypeImplies, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
independent_pairFormation, 
sqequalRule, 
Error :memTop, 
dependent_functionElimination, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation_alt, 
thin, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
equalityElimination, 
hyp_replacement, 
imageMemberEquality, 
unionIsType
Latex:
\mforall{}[A,T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[a:A].  \mforall{}[f:A  {}\mrightarrow{}  A].  \mforall{}[L:(T  \mtimes{}  A)  List].
    no\_repeats(T;map(\mlambda{}p.(fst(p));update-alist(eq;L;x;a;n.f[n])))  
    supposing  no\_repeats(T;map(\mlambda{}p.(fst(p));L))
 Date html generated: 
2020_05_19-PM-09_52_17
 Last ObjectModification: 
2019_12_26-AM-11_47_52
Theory : decidable!equality
Home
Index