Nuprl Lemma : select_listify_id
∀[T:Type]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[i:ℕn].  ((f)[ℕn][i] = (f i) ∈ T)
Proof
Definitions occuring in Statement : 
select: L[n]
, 
listify: listify(f;m;n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
sq_type: SQType(T)
, 
not: ¬A
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
top: Top
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
false: False
, 
or: P ∨ Q
, 
le: A ≤ B
, 
int_seg: {i..j-}
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
int_lower: {...i}
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
listify: listify(f;m;n)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
select: L[n]
, 
nil: []
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
bfalse: ff
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
sq_stable: SqStable(P)
Lemmas referenced : 
int_seg_wf, 
nat_wf, 
not-lt-2, 
subtype_base_sq, 
minus-add, 
le-add-cancel-alt, 
mul-commutes, 
less-iff-le, 
le-add-cancel, 
mul-associates, 
mul-distributes, 
less_than_wf, 
omega-shadow, 
mul-distributes-right, 
two-mul, 
zero-mul, 
add-mul-special, 
add-commutes, 
add-swap, 
zero-add, 
one-mul, 
add-zero, 
minus-zero, 
add-associates, 
minus-one-mul-top, 
add_functionality_wrt_le, 
not-le-2, 
minus-one-mul, 
int_subtype_base, 
set_subtype_base, 
add-is-int-iff, 
int_lower_wf, 
lelt_wf, 
le_transitivity, 
base_wf, 
subtype_rel-equal, 
less_than_irreflexivity, 
less_than_transitivity1, 
le_weakening2, 
less_than_transitivity2, 
length_wf_nat, 
listify_length, 
non_neg_length, 
subtract_wf, 
le_reflexive, 
int_seg_subtype, 
subtype_rel_dep_function, 
listify_wf, 
select_wf, 
equal_wf, 
all_wf, 
le_wf, 
int_lower_ind, 
int_seg_properties, 
int_lower_properties, 
nat_properties, 
decidable__le, 
decidable__lt, 
le_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
lt_int_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_le_int, 
stuck-spread, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
decidable__int_equal, 
iff_weakening_equal, 
condition-implies-le, 
false_wf, 
select_cons_hd, 
true_wf, 
squash_wf, 
subtype_rel_self, 
not-equal-implies-less, 
select_cons_tl, 
mul-swap, 
minus-minus, 
le-add-cancel2, 
not-equal-2, 
sq_stable__le
Rules used in proof : 
Error :universeIsType, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
Error :functionIsType, 
functionEquality, 
universeEquality, 
Error :isect_memberFormation_alt, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
imageMemberEquality, 
voidEquality, 
minusEquality, 
multiplyEquality, 
intEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
addEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
promote_hyp, 
equalitySymmetry, 
equalityTransitivity, 
sqequalIntensionalEquality, 
dependent_pairFormation, 
voidElimination, 
independent_functionElimination, 
unionElimination, 
productElimination, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
applyEquality, 
cumulativity, 
lambdaEquality, 
dependent_functionElimination, 
instantiate, 
equalityElimination, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[i:\mBbbN{}n].    ((f)[\mBbbN{}n][i]  =  (f  i))
Date html generated:
2019_06_20-PM-00_40_58
Last ObjectModification:
2018_09_26-PM-02_18_36
Theory : list_0
Home
Index