Nuprl Lemma : select_listify_id

[T:Type]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[i:ℕn].  ((f)[ℕn][i] (f i) ∈ T)


Proof




Definitions occuring in Statement :  select: L[n] listify: listify(f;m;n) int_seg: {i..j-} nat: uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: sq_type: SQType(T) not: ¬A true: True less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + top: Top subtract: m uiff: uiff(P;Q) exists: x:A. B[x] guard: {T} lelt: i ≤ j < k false: False or: P ∨ Q le: A ≤ B int_seg: {i..j-} and: P ∧ Q uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B int_lower: {...i} prop: implies:  Q so_lambda: λ2x.t[x] all: x:A. B[x] decidable: Dec(P) listify: listify(f;m;n) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  select: L[n] nil: [] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff rev_implies:  Q iff: ⇐⇒ Q sq_stable: SqStable(P)
Lemmas referenced :  int_seg_wf nat_wf not-lt-2 subtype_base_sq minus-add le-add-cancel-alt mul-commutes less-iff-le le-add-cancel mul-associates mul-distributes less_than_wf omega-shadow mul-distributes-right two-mul zero-mul add-mul-special add-commutes add-swap zero-add one-mul add-zero minus-zero add-associates minus-one-mul-top add_functionality_wrt_le not-le-2 minus-one-mul int_subtype_base set_subtype_base add-is-int-iff int_lower_wf lelt_wf le_transitivity base_wf subtype_rel-equal less_than_irreflexivity less_than_transitivity1 le_weakening2 less_than_transitivity2 length_wf_nat listify_length non_neg_length subtract_wf le_reflexive int_seg_subtype subtype_rel_dep_function listify_wf select_wf equal_wf all_wf le_wf int_lower_ind int_seg_properties int_lower_properties nat_properties decidable__le decidable__lt le_int_wf bool_wf equal-wf-T-base assert_wf lt_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_le_int stuck-spread eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int decidable__int_equal iff_weakening_equal condition-implies-le false_wf select_cons_hd true_wf squash_wf subtype_rel_self not-equal-implies-less select_cons_tl mul-swap minus-minus le-add-cancel2 not-equal-2 sq_stable__le
Rules used in proof :  Error :universeIsType,  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis because_Cache Error :functionIsType,  functionEquality universeEquality Error :isect_memberFormation_alt,  sqequalRule isect_memberEquality axiomEquality imageMemberEquality voidEquality minusEquality multiplyEquality intEquality baseClosed closedConclusion baseApply addEquality dependent_set_memberEquality functionExtensionality promote_hyp equalitySymmetry equalityTransitivity sqequalIntensionalEquality dependent_pairFormation voidElimination independent_functionElimination unionElimination productElimination lambdaFormation independent_pairFormation independent_isectElimination applyEquality cumulativity lambdaEquality dependent_functionElimination instantiate equalityElimination imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[i:\mBbbN{}n].    ((f)[\mBbbN{}n][i]  =  (f  i))



Date html generated: 2019_06_20-PM-00_40_58
Last ObjectModification: 2018_09_26-PM-02_18_36

Theory : list_0


Home Index