Nuprl Lemma : cycle-decomp
∀n:ℕ. ∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} .
  ∃cycles:ℕn List List
   (no_repeats(ℕn List;cycles)
   ∧ (∀c1∈cycles.(∀c2∈cycles.(c1 = c2 ∈ (ℕn List)) ∨ l_disjoint(ℕn;c1;c2)))
   ∧ (∀c∈cycles.0 < ||c|| ∧ no_repeats(ℕn;c))
   ∧ (f = reduce(λc,g. (cycle(c) o g);λx.x;cycles) ∈ (ℕn ⟶ ℕn)))
Proof
Definitions occuring in Statement : 
cycle: cycle(L), 
l_disjoint: l_disjoint(T;l1;l2), 
l_all: (∀x∈L.P[x]), 
no_repeats: no_repeats(T;l), 
length: ||as||, 
reduce: reduce(f;k;as), 
list: T List, 
inject: Inj(A;B;f), 
compose: f o g, 
int_seg: {i..j-}, 
nat: ℕ, 
less_than: a < b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
squash: ↓T, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
int_seg: {i..j-}, 
guard: {T}, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
less_than: a < b, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
le: A ≤ B, 
less_than': less_than'(a;b), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
no_repeats: no_repeats(T;l), 
pairwise: (∀x,y∈L.  P[x; y]), 
l_disjoint: l_disjoint(T;l1;l2), 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
l_exists: (∃x∈L. P[x]), 
l_member: (x ∈ l), 
true: True, 
l_all: (∀x∈L.P[x]), 
compose: f o g
Lemmas referenced : 
orbit-decomp, 
int_seg_wf, 
decidable__equal_int_seg, 
finite-type-int_seg, 
sq_stable__inject, 
l_all_iff, 
list_wf, 
l_member_wf, 
less_than_wf, 
length_wf, 
no_repeats_wf, 
all_wf, 
equal_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
eq_int_wf, 
subtract_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
false_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
l_all_wf, 
nat_wf, 
fun_exp_wf, 
or_wf, 
l_disjoint_wf, 
reduce_wf, 
compose_wf, 
cycle_wf, 
set_wf, 
inject_wf, 
not_wf, 
lelt_wf, 
list_subtype_base, 
set_subtype_base, 
int_subtype_base, 
select_member, 
decidable__equal_int, 
le_wf, 
pairwise-implies, 
squash_wf, 
true_wf, 
apply-cycle-member, 
iff_weakening_equal, 
apply-cycle-non-member, 
cycle-closed, 
list_induction, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
reduce_cons_lemma, 
cons_member, 
cons_wf, 
and_wf, 
no_repeats_cons, 
reduce_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
dependent_pairFormation, 
lambdaEquality, 
productEquality, 
applyEquality, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
addEquality, 
setEquality, 
addLevel, 
functionEquality, 
functionExtensionality, 
isect_memberFormation, 
dependent_set_memberEquality, 
universeEquality, 
inlFormation, 
inrFormation, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .
    \mexists{}cycles:\mBbbN{}n  List  List
      (no\_repeats(\mBbbN{}n  List;cycles)
      \mwedge{}  (\mforall{}c1\mmember{}cycles.(\mforall{}c2\mmember{}cycles.(c1  =  c2)  \mvee{}  l\_disjoint(\mBbbN{}n;c1;c2)))
      \mwedge{}  (\mforall{}c\mmember{}cycles.0  <  ||c||  \mwedge{}  no\_repeats(\mBbbN{}n;c))
      \mwedge{}  (f  =  reduce(\mlambda{}c,g.  (cycle(c)  o  g);\mlambda{}x.x;cycles)))
Date html generated:
2017_04_17-AM-08_19_29
Last ObjectModification:
2017_02_27-PM-04_45_06
Theory : list_1
Home
Index