Nuprl Lemma : decidable__exists_iseg

[T:Type]. ∀[P:(T List) ⟶ ℙ].  ((∀L:T List. Dec(P[L]))  (∀L:T List. Dec(∃L':T List. (L' ≤ L ∧ P[L']))))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} sq_type: SQType(T) nat: ge: i ≥  less_than: a < b squash: T cons: [a b] assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) int_iseg: {i...j} cand: c∧ B btrue: tt iseg: l1 ≤ l2 less_than': less_than'(a;b) true: True last: last(L) subtract: m length: ||as|| list_ind: list_ind nil: [] it:
Lemmas referenced :  int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf subtype_base_sq set_subtype_base lelt_wf int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le istype-less_than subtype_rel_self non_neg_length nat_properties length_wf decidable__assert null_wf list-cases product_subtype_list null_cons_lemma last-lemma-sq pos_length iff_transitivity not_wf equal-wf-T-base list_wf assert_wf bnot_wf iff_weakening_uiff assert_of_null istype-assert nil_wf length_of_nil_lemma istype-void assert_of_bnot firstn_wf length_firstn le_wf decidable_wf iseg_wf primrec-wf2 itermAdd_wf int_term_value_add_lemma istype-nat length_wf_nat istype-universe iseg_weakening null_nil_lemma iseg_nil last_wf cons_wf append_wf iseg_append append_back_nil iseg_append_iff iseg_single length_of_cons_lemma equal_wf list_extensionality length-append select_wf squash_wf true_wf select_append_front select_firstn iff_weakening_equal length_firstn_eq less_than_wf add_functionality_wrt_eq select_append_back nat_wf select-nthtl subtype_rel_list top_wf nth_tl_decomp nth_tl_is_nil minus-add minus-minus add-associates minus-one-mul add-swap add-mul-special add-commutes zero-add zero-mul select0 hd_wf istype-false
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination setElimination rename productElimination hypothesis hypothesisEquality natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination unionElimination applyEquality instantiate cumulativity intEquality inhabitedIsType equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality_alt because_Cache productIsType promote_hyp hypothesis_subsumption imageElimination baseClosed functionIsType equalityIstype functionEquality productEquality setIsType addEquality universeEquality inrFormation_alt inlFormation_alt hyp_replacement imageMemberEquality multiplyEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}L:T  List.  Dec(P[L]))  {}\mRightarrow{}  (\mforall{}L:T  List.  Dec(\mexists{}L':T  List.  (L'  \mleq{}  L  \mwedge{}  P[L']))))



Date html generated: 2020_05_19-PM-09_48_58
Last ObjectModification: 2019_12_31-PM-00_13_48

Theory : list_1


Home Index