Nuprl Lemma : firstn-mklist
∀[m,n:ℕ]. ∀[f:ℕm ⟶ Top].  (firstn(n;mklist(m;f)) ~ mklist(imin(n;m);f))
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f), 
imin: imin(a;b), 
firstn: firstn(n;as), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
top: Top, 
function: x:A ⟶ B[x], 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
sq_type: SQType(T), 
mklist: mklist(n;f), 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
firstn: firstn(n;as), 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
top_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
int_seg_properties, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
first0, 
mklist_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf, 
primrec0_lemma, 
decidable__lt, 
lelt_wf, 
firstn_decomp2, 
int_seg_subtype_nat, 
false_wf, 
mklist_length, 
primrec-unroll, 
eq_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
list_ind_nil_lemma, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
firstn_append, 
cons_wf, 
nil_wf, 
subtract-add-cancel, 
length_wf, 
select-mklist, 
imin_unfold, 
set_subtype_base, 
iff_weakening_equal, 
le_int_wf, 
assert_of_le_int, 
firstn_all
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
functionEquality, 
unionElimination, 
because_Cache, 
productElimination, 
instantiate, 
cumulativity, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
applyEquality, 
equalityElimination, 
baseClosed, 
impliesFunctionality, 
promote_hyp, 
addEquality, 
isect_memberFormation, 
sqequalIntensionalEquality
Latex:
\mforall{}[m,n:\mBbbN{}].  \mforall{}[f:\mBbbN{}m  {}\mrightarrow{}  Top].    (firstn(n;mklist(m;f))  \msim{}  mklist(imin(n;m);f))
 Date html generated: 
2017_04_17-AM-08_01_29
 Last ObjectModification: 
2017_02_27-PM-04_32_48
Theory : list_1
Home
Index