Nuprl Lemma : polynom-is-comm-ring
∀[n:ℕ]
  ((∀[p,q,r:polynom(n)].
      (add-polynom(n;tt;p;add-polynom(n;tt;q;r)) = add-polynom(n;tt;add-polynom(n;tt;p;q);r) ∈ polynom(n)))
  ∧ (∀[p:polynom(n)]. (add-polynom(n;tt;p;polyconst(n;0)) = p ∈ polynom(n)))
  ∧ (∀[p,q:polynom(n)].  (add-polynom(n;tt;p;q) = add-polynom(n;tt;q;p) ∈ polynom(n)))
  ∧ (∀[p:polynom(n)]. (add-polynom(n;tt;p;minus-polynom(n;p)) = polyconst(n;0) ∈ polynom(n)))
  ∧ (∀[p,q,r:polynom(n)].  (mul-polynom(n;p;mul-polynom(n;q;r)) = mul-polynom(n;mul-polynom(n;p;q);r) ∈ polynom(n)))
  ∧ (∀[p:polynom(n)]. (mul-polynom(n;p;polyconst(n;1)) = p ∈ polynom(n)))
  ∧ (∀[p,q:polynom(n)].  (mul-polynom(n;p;q) = mul-polynom(n;q;p) ∈ polynom(n)))
  ∧ (∀[p,q,r:polynom(n)].
       (mul-polynom(n;p;add-polynom(n;tt;q;r)) = add-polynom(n;tt;mul-polynom(n;p;q);mul-polynom(n;p;r)) ∈ polynom(n))))
Proof
Definitions occuring in Statement : 
mul-polynom: mul-polynom(n;p;q)
, 
minus-polynom: minus-polynom(n;p)
, 
polyconst: polyconst(n;k)
, 
add-polynom: add-polynom(n;rmz;p;q)
, 
polynom: polynom(n)
, 
nat: ℕ
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
top: Top
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
so_apply: x[s]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
minus-polynom-val, 
add_functionality_wrt_eq, 
true_wf, 
squash_wf, 
mul-polynom_wf, 
add-inverse, 
minus-polynom_wf, 
add-polynom_wf1, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
mul-polynom-int-val, 
mul-polynom_wf2, 
minus-polynom_wf2, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
le_wf, 
decidable__equal_int, 
nat_properties, 
polyconst-val, 
iff_weakening_equal, 
poly-int-val_wf2, 
btrue_wf, 
polynom_subtype_polyform, 
add-polynom-int-val, 
equal_wf, 
polyconst_wf, 
equal-wf-base-T, 
list_wf, 
set_wf, 
add-polynom_wf, 
polynom-equal-iff
Rules used in proof : 
universeEquality, 
multiplyEquality, 
minusEquality, 
addEquality, 
independent_pairEquality, 
computeAll, 
voidEquality, 
voidElimination, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
imageElimination, 
natural_numberEquality, 
independent_pairFormation, 
axiomEquality, 
isect_memberEquality, 
rename, 
setElimination, 
because_Cache, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
lambdaEquality, 
sqequalRule, 
intEquality, 
lambdaFormation, 
independent_isectElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}]
    ((\mforall{}[p,q,r:polynom(n)].
            (add-polynom(n;tt;p;add-polynom(n;tt;q;r))  =  add-polynom(n;tt;add-polynom(n;tt;p;q);r)))
    \mwedge{}  (\mforall{}[p:polynom(n)].  (add-polynom(n;tt;p;polyconst(n;0))  =  p))
    \mwedge{}  (\mforall{}[p,q:polynom(n)].    (add-polynom(n;tt;p;q)  =  add-polynom(n;tt;q;p)))
    \mwedge{}  (\mforall{}[p:polynom(n)].  (add-polynom(n;tt;p;minus-polynom(n;p))  =  polyconst(n;0)))
    \mwedge{}  (\mforall{}[p,q,r:polynom(n)].
              (mul-polynom(n;p;mul-polynom(n;q;r))  =  mul-polynom(n;mul-polynom(n;p;q);r)))
    \mwedge{}  (\mforall{}[p:polynom(n)].  (mul-polynom(n;p;polyconst(n;1))  =  p))
    \mwedge{}  (\mforall{}[p,q:polynom(n)].    (mul-polynom(n;p;q)  =  mul-polynom(n;q;p)))
    \mwedge{}  (\mforall{}[p,q,r:polynom(n)].
              (mul-polynom(n;p;add-polynom(n;tt;q;r))
              =  add-polynom(n;tt;mul-polynom(n;p;q);mul-polynom(n;p;r)))))
Date html generated:
2017_04_20-AM-07_16_52
Last ObjectModification:
2017_04_19-PM-01_59_37
Theory : list_1
Home
Index