Nuprl Lemma : polynom-is-comm-ring

[n:ℕ]
  ((∀[p,q,r:polynom(n)].
      (add-polynom(n;tt;p;add-polynom(n;tt;q;r)) add-polynom(n;tt;add-polynom(n;tt;p;q);r) ∈ polynom(n)))
  ∧ (∀[p:polynom(n)]. (add-polynom(n;tt;p;polyconst(n;0)) p ∈ polynom(n)))
  ∧ (∀[p,q:polynom(n)].  (add-polynom(n;tt;p;q) add-polynom(n;tt;q;p) ∈ polynom(n)))
  ∧ (∀[p:polynom(n)]. (add-polynom(n;tt;p;minus-polynom(n;p)) polyconst(n;0) ∈ polynom(n)))
  ∧ (∀[p,q,r:polynom(n)].  (mul-polynom(n;p;mul-polynom(n;q;r)) mul-polynom(n;mul-polynom(n;p;q);r) ∈ polynom(n)))
  ∧ (∀[p:polynom(n)]. (mul-polynom(n;p;polyconst(n;1)) p ∈ polynom(n)))
  ∧ (∀[p,q:polynom(n)].  (mul-polynom(n;p;q) mul-polynom(n;q;p) ∈ polynom(n)))
  ∧ (∀[p,q,r:polynom(n)].
       (mul-polynom(n;p;add-polynom(n;tt;q;r)) add-polynom(n;tt;mul-polynom(n;p;q);mul-polynom(n;p;r)) ∈ polynom(n))))


Proof




Definitions occuring in Statement :  mul-polynom: mul-polynom(n;p;q) minus-polynom: minus-polynom(n;p) polyconst: polyconst(n;k) add-polynom: add-polynom(n;rmz;p;q) polynom: polynom(n) nat: btrue: tt uall: [x:A]. B[x] and: P ∧ Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True squash: T so_apply: x[s] nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: all: x:A. B[x] uimplies: supposing a uiff: uiff(P;Q) cand: c∧ B and: P ∧ Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  minus-polynom-val add_functionality_wrt_eq true_wf squash_wf mul-polynom_wf add-inverse minus-polynom_wf add-polynom_wf1 int_term_value_mul_lemma itermMultiply_wf mul-polynom-int-val mul-polynom_wf2 minus-polynom_wf2 int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt le_wf decidable__equal_int nat_properties polyconst-val iff_weakening_equal poly-int-val_wf2 btrue_wf polynom_subtype_polyform add-polynom-int-val equal_wf polyconst_wf equal-wf-base-T list_wf set_wf add-polynom_wf polynom-equal-iff
Rules used in proof :  universeEquality multiplyEquality minusEquality addEquality independent_pairEquality computeAll voidEquality voidElimination int_eqEquality dependent_pairFormation unionElimination dependent_functionElimination independent_functionElimination imageMemberEquality equalitySymmetry equalityTransitivity dependent_set_memberEquality imageElimination natural_numberEquality independent_pairFormation axiomEquality isect_memberEquality rename setElimination because_Cache applyEquality baseClosed closedConclusion baseApply lambdaEquality sqequalRule intEquality lambdaFormation independent_isectElimination productElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}]
    ((\mforall{}[p,q,r:polynom(n)].
            (add-polynom(n;tt;p;add-polynom(n;tt;q;r))  =  add-polynom(n;tt;add-polynom(n;tt;p;q);r)))
    \mwedge{}  (\mforall{}[p:polynom(n)].  (add-polynom(n;tt;p;polyconst(n;0))  =  p))
    \mwedge{}  (\mforall{}[p,q:polynom(n)].    (add-polynom(n;tt;p;q)  =  add-polynom(n;tt;q;p)))
    \mwedge{}  (\mforall{}[p:polynom(n)].  (add-polynom(n;tt;p;minus-polynom(n;p))  =  polyconst(n;0)))
    \mwedge{}  (\mforall{}[p,q,r:polynom(n)].
              (mul-polynom(n;p;mul-polynom(n;q;r))  =  mul-polynom(n;mul-polynom(n;p;q);r)))
    \mwedge{}  (\mforall{}[p:polynom(n)].  (mul-polynom(n;p;polyconst(n;1))  =  p))
    \mwedge{}  (\mforall{}[p,q:polynom(n)].    (mul-polynom(n;p;q)  =  mul-polynom(n;q;p)))
    \mwedge{}  (\mforall{}[p,q,r:polynom(n)].
              (mul-polynom(n;p;add-polynom(n;tt;q;r))
              =  add-polynom(n;tt;mul-polynom(n;p;q);mul-polynom(n;p;r)))))



Date html generated: 2017_04_20-AM-07_16_52
Last ObjectModification: 2017_04_19-PM-01_59_37

Theory : list_1


Home Index