Nuprl Lemma : polyconst_wf

[n:ℕ]. ∀[k:ℤ].  (polyconst(n;k) ∈ polynom(n))


Proof




Definitions occuring in Statement :  polyconst: polyconst(n;k) polynom: polynom(n) nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  int_seg: {i..j-} iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] polyform: polyform(n) less_than': less_than'(a;b) squash: T less_than: a < b polyform-lead-nonzero: polyform-lead-nonzero(n;p) nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 guard: {T} subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) polynom: polynom(n) polyconst: polyconst(n;k) prop: and: P ∧ Q top: Top all: x:A. B[x] not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  polyconst-val int_subtype_base list_subtype_base int_seg_wf upto_wf length_upto not_wf assert-poly-zero equal-wf-base list_wf all_wf nat_wf poly-zero_wf assert_wf reduce_hd_cons_lemma length_of_cons_lemma cons_wf polynom_subtype_polyform polyform_wf subtype_rel_list polyform-lead-nonzero_wf length_of_nil_lemma le_wf polynom_wf nil_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf less_than_irreflexivity le_weakening less_than_transitivity1 int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  impliesFunctionality addLevel baseClosed closedConclusion baseApply setEquality imageElimination dependent_set_memberEquality instantiate promote_hyp productElimination equalityElimination because_Cache applyEquality unionElimination equalitySymmetry equalityTransitivity axiomEquality independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbZ{}].    (polyconst(n;k)  \mmember{}  polynom(n))



Date html generated: 2017_04_20-AM-07_10_51
Last ObjectModification: 2017_04_17-PM-02_13_18

Theory : list_1


Home Index