Nuprl Lemma : minus-polynom_wf2

[n:ℕ]. ∀[p:polynom(n)].  (minus-polynom(n;p) ∈ polynom(n))


Proof




Definitions occuring in Statement :  minus-polynom: minus-polynom(n;p) polynom: polynom(n) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  true: True so_apply: x[s] so_lambda: λ2x.t[x] cons: [a b] squash: T less_than: a < b polyform-lead-nonzero: polyform-lead-nonzero(n;p) sq_type: SQType(T) rev_implies:  Q iff: ⇐⇒ Q bfalse: ff uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 polyform: polyform(n) guard: {T} or: P ∨ Q decidable: Dec(P) less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B minus-polynom: minus-polynom(n;p) btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) polynom: polynom(n) prop: and: P ∧ Q top: Top all: x:A. B[x] not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_term_value_minus_lemma int_formula_prop_eq_lemma itermMinus_wf intformeq_wf minus-is-int-iff decidable__equal_int iff_weakening_equal minus-polynom-val true_wf squash_wf poly-zero_wf list_subtype_base list_wf set_wf assert-poly-zero length_wf reduce_hd_cons_lemma map_cons_lemma length_of_cons_lemma product_subtype_list map_nil_lemma length_of_nil_lemma list-cases length-map bool_subtype_base subtype_base_sq bool_cases equal_wf assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity polynom_subtype_polyform polyform_wf subtype_rel_list polyform-lead-nonzero_wf map_wf not_wf bnot_wf less_than_irreflexivity le_weakening less_than_transitivity1 assert_wf int_subtype_base equal-wf-base bool_wf eq_int_wf nat_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le le_wf false_wf subtype_rel_self polynom_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  pointwiseFunctionality imageMemberEquality universeEquality hypothesis_subsumption promote_hyp imageElimination cumulativity instantiate impliesFunctionality productElimination equalityElimination baseClosed closedConclusion baseApply because_Cache unionElimination dependent_set_memberEquality applyEquality minusEquality equalitySymmetry equalityTransitivity axiomEquality independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:polynom(n)].    (minus-polynom(n;p)  \mmember{}  polynom(n))



Date html generated: 2017_04_20-AM-07_12_08
Last ObjectModification: 2017_04_19-AM-11_07_03

Theory : list_1


Home Index