Nuprl Lemma : minus-polynom-val

[n:ℕ]. ∀[p:polyform(n)]. ∀[l:{l:ℤ List| ||l|| n ∈ ℤ].  (minus-polynom(n;p)@l (-p@l) ∈ ℤ)


Proof




Definitions occuring in Statement :  minus-polynom: minus-polynom(n;p) poly-int-val: p@l polyform: polyform(n) length: ||as|| list: List nat: uall: [x:A]. B[x] set: {x:A| B[x]}  minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q true: True less_than': less_than'(a;b) squash: T less_than: a < b so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] colength: colength(L) nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) unit: Unit bool: 𝔹 le: A ≤ B cons: [a b] it: nil: [] null: null(as) poly-int-val: p@l or: P ∨ Q decidable: Dec(P) btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) minus-polynom: minus-polynom(n;p) polyform: polyform(n) so_apply: x[s] guard: {T} subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: and: P ∧ Q top: Top all: x:A. B[x] not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  add_functionality_wrt_eq int_term_value_minus_lemma int_term_value_mul_lemma itermMinus_wf itermMultiply_wf minus-is-int-iff length-map iff_weakening_equal minus_functionality_wrt_eq poly_int_val_cons_cons true_wf squash_wf assert_of_bnot iff_weakening_uiff iff_transitivity uiff_transitivity length_wf_nat exp_wf2 poly-int-val_wf false_wf add-is-int-iff minus-polynom_wf map_wf cons_wf not_wf bnot_wf assert_wf poly_int_val_nil_cons map_cons_lemma decidable__equal_int set_subtype_base spread_cons_lemma map_nil_lemma colength_wf_list equal-wf-T-base neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert le_weakening assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__lt non_neg_length length_wf le_weakening2 length_of_cons_lemma product_subtype_list length_of_nil_lemma list-cases nat_wf list_subtype_base equal-wf-base-T int_subtype_base int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le le_wf polyform_wf less_than_irreflexivity less_than_transitivity1 equal-wf-base list_wf set_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  imageMemberEquality universeEquality impliesFunctionality multiplyEquality pointwiseFunctionality imageElimination addEquality applyLambdaEquality int_eqReduceFalseSq cumulativity instantiate int_eqReduceTrueSq equalityElimination equalitySymmetry equalityTransitivity productElimination hypothesis_subsumption promote_hyp minusEquality unionElimination dependent_set_memberEquality because_Cache applyEquality baseClosed closedConclusion baseApply axiomEquality independent_functionElimination computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:polyform(n)].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].    (minus-polynom(n;p)@l  =  (-p@l))



Date html generated: 2017_04_20-AM-07_11_50
Last ObjectModification: 2017_04_19-AM-11_05_45

Theory : list_1


Home Index