Nuprl Lemma : minus-polynom-val
∀[n:ℕ]. ∀[p:polyform(n)]. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ].  (minus-polynom(n;p)@l = (-p@l) ∈ ℤ)
Proof
Definitions occuring in Statement : 
minus-polynom: minus-polynom(n;p)
, 
poly-int-val: p@l
, 
polyform: polyform(n)
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
minus: -n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
colength: colength(L)
, 
nequal: a ≠ b ∈ T 
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
unit: Unit
, 
bool: 𝔹
, 
le: A ≤ B
, 
cons: [a / b]
, 
it: ⋅
, 
nil: []
, 
null: null(as)
, 
poly-int-val: p@l
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
minus-polynom: minus-polynom(n;p)
, 
polyform: polyform(n)
, 
so_apply: x[s]
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
add_functionality_wrt_eq, 
int_term_value_minus_lemma, 
int_term_value_mul_lemma, 
itermMinus_wf, 
itermMultiply_wf, 
minus-is-int-iff, 
length-map, 
iff_weakening_equal, 
minus_functionality_wrt_eq, 
poly_int_val_cons_cons, 
true_wf, 
squash_wf, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
uiff_transitivity, 
length_wf_nat, 
exp_wf2, 
poly-int-val_wf, 
false_wf, 
add-is-int-iff, 
minus-polynom_wf, 
map_wf, 
cons_wf, 
not_wf, 
bnot_wf, 
assert_wf, 
poly_int_val_nil_cons, 
map_cons_lemma, 
decidable__equal_int, 
set_subtype_base, 
spread_cons_lemma, 
map_nil_lemma, 
colength_wf_list, 
equal-wf-T-base, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
le_weakening, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
itermAdd_wf, 
intformeq_wf, 
decidable__lt, 
non_neg_length, 
length_wf, 
le_weakening2, 
length_of_cons_lemma, 
product_subtype_list, 
length_of_nil_lemma, 
list-cases, 
nat_wf, 
list_subtype_base, 
equal-wf-base-T, 
int_subtype_base, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
le_wf, 
polyform_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
equal-wf-base, 
list_wf, 
set_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
imageMemberEquality, 
universeEquality, 
impliesFunctionality, 
multiplyEquality, 
pointwiseFunctionality, 
imageElimination, 
addEquality, 
applyLambdaEquality, 
int_eqReduceFalseSq, 
cumulativity, 
instantiate, 
int_eqReduceTrueSq, 
equalityElimination, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
hypothesis_subsumption, 
promote_hyp, 
minusEquality, 
unionElimination, 
dependent_set_memberEquality, 
because_Cache, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
axiomEquality, 
independent_functionElimination, 
computeAll, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:polyform(n)].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].    (minus-polynom(n;p)@l  =  (-p@l))
Date html generated:
2017_04_20-AM-07_11_50
Last ObjectModification:
2017_04_19-AM-11_05_45
Theory : list_1
Home
Index