Nuprl Lemma : mul-polynom-int-val
∀[n:ℕ]. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ]. ∀[p,q:polyform(n)].  (mul-polynom(n;p;q)@l = (p@l * q@l) ∈ ℤ)
Proof
Definitions occuring in Statement : 
mul-polynom: mul-polynom(n;p;q)
, 
poly-int-val: p@l
, 
polyform: polyform(n)
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
subtract: n - m
, 
poly-zero: poly-zero(n;p)
, 
primrec: primrec(n;b;c)
, 
exp: i^n
, 
nat_plus: ℕ+
, 
append: as @ bs
, 
has-valueall: has-valueall(a)
, 
has-value: (a)↓
, 
callbyvalueall: callbyvalueall, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
colength: colength(L)
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
eager-accum: eager-accum(x,a.f[x; a];y;l)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
squash: ↓T
, 
nequal: a ≠ b ∈ T 
, 
cons: [a / b]
, 
nil: []
, 
null: null(as)
, 
poly-int-val: p@l
, 
mul-polynom: mul-polynom(n;p;q)
, 
less_than: a < b
, 
int_upper: {i...}
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
polyform: polyform(n)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
map-length, 
mul-zero, 
map_cons_lemma, 
map_nil_lemma, 
multiply-is-int-iff, 
add-subtract-cancel, 
exp_step, 
poly_int_val_cons_cons, 
length-append, 
zero-mul, 
null_cons_lemma, 
add-polynom-int-val, 
add_functionality_wrt_eq, 
iff_wf, 
iff_imp_equal_bool, 
add_nat_wf, 
uiff_transitivity, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
bool_cases, 
mul-polynom_wf, 
map_wf, 
poly-zero_wf, 
nil_wf, 
polynom_subtype_polyform, 
append_wf, 
btrue_neq_bfalse, 
not_assert_elim, 
null_nil_lemma, 
assert_of_null, 
null_wf, 
btrue_wf, 
add-polynom_wf1, 
not_wf, 
bnot_wf, 
assert_wf, 
evalall-reduce, 
valueall-type-polyform, 
valueall-type-has-valueall, 
poly_int_val_nil_cons, 
list_ind_cons_lemma, 
set_subtype_base, 
spread_cons_lemma, 
exp0_lemma, 
list_ind_nil_lemma, 
colength_wf_list, 
equal-wf-T-base, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
length_wf_nat, 
exp_wf2, 
polyconst-val, 
iff_weakening_equal, 
polyconst_wf, 
true_wf, 
squash_wf, 
cons_wf, 
poly-int-val_wf, 
subtype_rel-equal, 
add-is-int-iff, 
length_of_nil_lemma, 
int_upper_properties, 
equal-wf-base, 
non_neg_length, 
length_wf, 
le_weakening2, 
length_of_cons_lemma, 
product_subtype_list, 
list-cases, 
nat_wf, 
int_subtype_base, 
list_subtype_base, 
int_term_value_add_lemma, 
itermAdd_wf, 
lelt_wf, 
decidable__lt, 
zero-add, 
nequal-le-implies, 
int_upper_subtype_nat, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
le_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_seg_subtype, 
decidable__equal_int, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
int_seg_subtype_nat, 
int_seg_properties, 
int_seg_wf, 
equal-wf-base-T, 
list_wf, 
set_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
polyform_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalAxiom, 
levelHypothesis, 
equalityUniverse, 
sqequalIntensionalEquality, 
addLevel, 
impliesFunctionality, 
callbyvalueReduce, 
imageMemberEquality, 
universeEquality, 
imageElimination, 
int_eqReduceFalseSq, 
int_eqReduceTrueSq, 
pointwiseFunctionality, 
multiplyEquality, 
addEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
equalityElimination, 
dependent_set_memberEquality, 
hypothesis_subsumption, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
unionElimination, 
productElimination, 
baseClosed, 
closedConclusion, 
baseApply, 
because_Cache, 
applyEquality, 
axiomEquality, 
independent_functionElimination, 
computeAll, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[p,q:polyform(n)].    (mul-polynom(n;p;q)@l  =  (p@l  *  q@l))
Date html generated:
2017_04_20-AM-07_13_38
Last ObjectModification:
2017_04_17-PM-06_31_12
Theory : list_1
Home
Index