Nuprl Lemma : mul-polynom_wf

[n:ℕ]. ∀[p,q:polyform(n)].  (mul-polynom(n;p;q) ∈ polyform(n))


Proof




Definitions occuring in Statement :  mul-polynom: mul-polynom(n;p;q) polyform: polyform(n) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  nequal: a ≠ b ∈  assert: b bnot: ¬bb so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] unit: Unit bool: 𝔹 bfalse: ff rev_implies:  Q iff: ⇐⇒ Q uiff: uiff(P;Q) sq_type: SQType(T) it: nil: [] polyconst: polyconst(n;k) guard: {T} subtype_rel: A ⊆B btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) polyform: polyform(n) or: P ∨ Q decidable: Dec(P) mul-polynom: mul-polynom(n;p;q) prop: and: P ∧ Q top: Top all: x:A. B[x] not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  neg_assert_of_eq_int assert-bnot bool_cases_sqequal subtype_rel-equal assert_of_null map_wf poly-zero_wf polynom_subtype_polyform polyconst_wf cons_wf append_wf equal-wf-T-base null_wf btrue_wf add-polynom_wf1 eager-accum_wf equal_wf uiff_transitivity assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base subtype_base_sq bool_cases valueall-type-polyform list-valueall-type list_wf bool_wf int_subtype_base equal-wf-base not_wf bnot_wf assert_wf eq_int_wf nil_wf int_formula_prop_eq_lemma intformeq_wf less_than_irreflexivity le_weakening less_than_transitivity1 decidable__equal_int nat_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le le_wf polyform_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  promote_hyp equalityElimination impliesFunctionality productElimination cumulativity instantiate closedConclusion baseApply baseClosed int_eqReduceFalseSq applyEquality int_eqReduceTrueSq because_Cache multiplyEquality unionElimination dependent_set_memberEquality equalitySymmetry equalityTransitivity axiomEquality independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polyform(n)].    (mul-polynom(n;p;q)  \mmember{}  polyform(n))



Date html generated: 2017_04_20-AM-07_12_50
Last ObjectModification: 2017_04_17-PM-04_31_07

Theory : list_1


Home Index