Nuprl Lemma : mul-polynom_wf2

[n:ℕ]. ∀[p,q:polynom(n)].  (mul-polynom(n;p;q) ∈ polynom(n))


Proof




Definitions occuring in Statement :  mul-polynom: mul-polynom(n;p;q) polynom: polynom(n) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  nat_plus: + le: A ≤ B cons: [a b] true: True so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs rev_implies:  Q iff: ⇐⇒ Q nil: [] list_ind: list_ind length: ||as|| less_than': less_than'(a;b) squash: T less_than: a < b polyform-lead-nonzero: polyform-lead-nonzero(n;p) so_apply: x[s1;s2] assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 so_lambda: λ2y.t[x; y] guard: {T} subtype_rel: A ⊆B btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) polynom: polynom(n) or: P ∨ Q decidable: Dec(P) mul-polynom: mul-polynom(n;p;q) prop: and: P ∧ Q top: Top all: x:A. B[x] not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  iff_imp_equal_bool nonzero-mul-polynom assert_functionality_wrt_uiff assert_of_ff nat_plus_properties nat_plus_wf length_wf_nat add_nat_plus map_cons_lemma map_nil_lemma decidable__lt top_wf length_append le-add-cancel add-zero add_functionality_wrt_le add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 add-commutes subtype_rel-equal length_cons non_neg_length length_nil null_cons_lemma list_ind_cons_lemma product_subtype_list reduce_hd_cons_lemma null_nil_lemma list_ind_nil_lemma list-cases uiff_transitivity assert_of_bnot iff_weakening_uiff iff_transitivity assert_of_eq_int bool_cases map_wf false_wf int_term_value_add_lemma itermAdd_wf add-is-int-iff length_of_nil_lemma length_of_cons_lemma length-append cons_wf append_wf subtype_rel_list polyform_wf hd_wf length_wf nil_wf null_wf valueall-type-polynom polynom_subtype_polyform poly-zero_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert eqtt_to_assert bool_wf add-polynom_wf polyconst_wf eager-accum_wf int_subtype_base equal-wf-base not_wf bnot_wf assert_wf eq_int_wf int_formula_prop_eq_lemma intformeq_wf less_than_irreflexivity le_weakening less_than_transitivity1 decidable__equal_int nat_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le le_wf polynom_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  addLevel applyLambdaEquality imageMemberEquality minusEquality hypothesis_subsumption impliesFunctionality pointwiseFunctionality addEquality functionEquality imageElimination closedConclusion baseApply cumulativity instantiate promote_hyp productElimination equalityElimination baseClosed int_eqReduceFalseSq applyEquality int_eqReduceTrueSq because_Cache multiplyEquality unionElimination dependent_set_memberEquality equalitySymmetry equalityTransitivity axiomEquality independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polynom(n)].    (mul-polynom(n;p;q)  \mmember{}  polynom(n))



Date html generated: 2017_04_20-AM-07_14_57
Last ObjectModification: 2017_04_18-AM-09_45_56

Theory : list_1


Home Index