Nuprl Lemma : nonzero-mul-polynom

[n:ℕ]. ∀[p,q:polynom(n)].
  (poly-zero(n;mul-polynom(n;p;q)) ff) supposing (poly-zero(n;q) ff and poly-zero(n;p) ff)


Proof




Definitions occuring in Statement :  mul-polynom: mul-polynom(n;p;q) polynom: polynom(n) poly-zero: poly-zero(n;p) nat: bfalse: ff bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  int_upper: {i...} polyform: polyform(n) sq_stable: SqStable(P) append: as bs squash: T colength: colength(L) so_apply: x[s] so_lambda: λ2x.t[x] has-valueall: has-valueall(a) has-value: (a)↓ so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] list_ind: list_ind length: ||as|| nil: [] evalall: evalall(t) callbyvalueall: callbyvalueall add-polynom: add-polynom(n;rmz;p;q) bnot: ¬bb it: unit: Unit bool: 𝔹 polyconst: polyconst(n;k) so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) eager-accum: eager-accum(x,a.f[x; a];y;l) subtract: m true: True polyform-lead-nonzero: polyform-lead-nonzero(n;p) cons: [a b] assert: b bfalse: ff rev_implies:  Q iff: ⇐⇒ Q nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) polynom: polynom(n) uiff: uiff(P;Q) btrue: tt ifthenelse: if then else fi  eq_int: (i =z j) poly-zero: poly-zero(n;p) less_than: a < b sq_type: SQType(T) mul-polynom: mul-polynom(n;p;q) less_than': less_than'(a;b) le: A ≤ B or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B guard: {T} prop: and: P ∧ Q top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  imax_ub add-polynom-length subtract-add-cancel int_upper_properties neg_assert_of_eq_int nequal-le-implies int_upper_subtype_nat subtype_rel-equal add-polynom_wf1 add-is-int-iff sq_stable__le int-value-type value-type-has-value length-map length-append length-singleton iff_weakening_equal top_wf subtype_rel_list length_append true_wf squash_wf void-valueall-type nil_wf polyconst_wf append_wf set_subtype_base list_ind_nil_lemma colength_wf_list set_wf length_wf map_length non_neg_length iff_imp_equal_bool valueall-type-has-valueall valueall-type-polyform list-valueall-type map_wf mul-polynom_wf cons_wf polyform_wf list_wf evalall-reduce uiff_transitivity spread_cons_lemma assert-bnot bool_cases_sqequal list_ind_cons_lemma map_cons_lemma map_nil_lemma reduce_hd_cons_lemma equal_wf le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-lt-2 length_wf_nat length_of_cons_lemma length_of_nil_lemma btrue_neq_bfalse null_cons_lemma product_subtype_list null_nil_lemma list-cases eqtt_to_assert bool_subtype_base bool_cases assert_of_eq_int assert_of_bnot iff_weakening_uiff iff_transitivity int_entire_a not_wf bnot_wf assert_wf subtype_rel_self eq_int_wf eqff_to_assert nat_wf int_term_value_add_lemma itermAdd_wf int_seg_subtype_nat lelt_wf decidable__lt int_subtype_base subtype_base_sq le_wf int_formula_prop_eq_lemma intformeq_wf false_wf int_seg_subtype decidable__equal_int int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le polynom_subtype_polyform int_seg_properties int_seg_wf polynom_wf less_than_irreflexivity less_than_transitivity1 poly-zero_wf bool_wf equal-wf-T-base less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  inrFormation sqequalAxiom lessCases closedConclusion baseApply pointwiseFunctionality universeEquality imageMemberEquality imageElimination setEquality sqleReflexivity callbyvalueReduce equalityElimination minusEquality promote_hyp int_eqReduceFalseSq impliesFunctionality multiplyEquality addEquality cumulativity instantiate dependent_set_memberEquality hypothesis_subsumption applyLambdaEquality unionElimination productElimination equalitySymmetry equalityTransitivity baseClosed because_Cache applyEquality axiomEquality independent_functionElimination computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality intWeakElimination rename setElimination hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polynom(n)].
    (poly-zero(n;mul-polynom(n;p;q))  =  ff)  supposing  (poly-zero(n;q)  =  ff  and  poly-zero(n;p)  =  ff)



Date html generated: 2017_04_20-AM-07_14_28
Last ObjectModification: 2017_04_19-AM-09_56_59

Theory : list_1


Home Index