Nuprl Lemma : wfbts_wf
∀[opr:Type]. ∀[sort:term(opr) ⟶ ℕ]. ∀[arity:opr ⟶ ((ℕ × ℕ) List)]. ∀[t:wfterm(opr;sort;arity)].
  wfbts(t) ∈ wf-bound-terms(opr;sort;arity;term-opr(t)) supposing ¬↑isvarterm(t)
Proof
Definitions occuring in Statement : 
wfbts: wfbts(t), 
wf-bound-terms: wf-bound-terms(opr;sort;arity;f), 
wfterm: wfterm(opr;sort;arity), 
term-opr: term-opr(t), 
isvarterm: isvarterm(t), 
term: term(opr), 
list: T List, 
nat: ℕ, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
wfterm: wfterm(opr;sort;arity), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
bound-term: bound-term(opr), 
uiff: uiff(P;Q), 
wf-bound-terms: wf-bound-terms(opr;sort;arity;f), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
pi1: fst(t), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
pi2: snd(t), 
not: ¬A, 
false: False, 
prop: ℙ, 
wfbts: wfbts(t), 
squash: ↓T, 
true: True, 
guard: {T}, 
rev_implies: P ⇐ Q, 
mkterm: mkterm(opr;bts), 
term-bts: term-bts(t), 
outr: outr(x), 
cand: A c∧ B, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
ge: i ≥ j , 
sq_type: SQType(T), 
cons: [a / b], 
less_than': less_than'(a;b), 
colength: colength(L), 
nil: [], 
it: ⋅, 
less_than: a < b, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
select: L[n], 
nat_plus: ℕ+, 
subtract: n - m, 
term-opr: term-opr(t)
Lemmas referenced : 
assert-not-isvarterm, 
assert-wf-mkterm, 
istype-int, 
length_wf_nat, 
list_wf, 
varname_wf, 
wfterm_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
nat_wf, 
term-opr_wf, 
int_seg_wf, 
length_wf, 
istype-assert, 
isvarterm_wf, 
istype-void, 
term_wf, 
istype-nat, 
istype-universe, 
wf-term_wf, 
assert_wf, 
equal_wf, 
squash_wf, 
true_wf, 
bound-term_wf, 
term-bts_wf, 
not_wf, 
subtype_rel_self, 
iff_weakening_equal, 
select_wf, 
less_than_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
subtype_base_sq, 
non_neg_length, 
istype-le, 
nat_properties, 
ge_wf, 
istype-less_than, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
subtract-1-ge-0, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
nil_wf, 
cons_wf, 
length_of_cons_lemma, 
add-is-int-iff, 
false_wf, 
istype-false, 
add_nat_plus, 
nat_plus_properties, 
add-member-int_seg2, 
select_cons_tl_sq2, 
int_seg_subtype_nat, 
pi1_wf, 
subtype_rel_list, 
subtype_rel_product, 
pi2_wf, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
because_Cache, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
productIsType, 
equalityIstype, 
productEquality, 
applyEquality, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
sqequalBase, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityTransitivity, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
hyp_replacement, 
independent_pairFormation, 
applyLambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
cumulativity, 
intWeakElimination, 
functionIsTypeImplies, 
promote_hyp, 
hypothesis_subsumption, 
baseApply, 
closedConclusion, 
independent_pairEquality, 
addEquality, 
pointwiseFunctionality
Latex:
\mforall{}[opr:Type].  \mforall{}[sort:term(opr)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[arity:opr  {}\mrightarrow{}  ((\mBbbN{}  \mtimes{}  \mBbbN{})  List)].  \mforall{}[t:wfterm(opr;sort;arity)].
    wfbts(t)  \mmember{}  wf-bound-terms(opr;sort;arity;term-opr(t))  supposing  \mneg{}\muparrow{}isvarterm(t)
 Date html generated: 
2020_05_19-PM-09_58_44
 Last ObjectModification: 
2020_03_09-PM-04_10_26
Theory : terms
Home
Index