Nuprl Lemma : rng_prod_plus
∀[r:CRng]. ∀[n:ℕ]. ∀[F,G:ℕn ⟶ |r|].
  ((Π(r) 0 
         ≤ i 
         < n
     F[i] +r G[i])
  = Σ{r} p ∈ functions-list(n;2). (Π(r) 0 
                                        ≤ i 
                                        < n
                                    if (p i =z 0) then F[i] else G[i] fi )
  ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_lsum: Σ{r} x ∈ as. f[x], 
functions-list: functions-list(n;b), 
int_seg: {i..j-}, 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
so_apply: x[s], 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T, 
rng_prod: rng_prod, 
crng: CRng, 
rng_plus: +r, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
crng: CRng, 
rng: Rng, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
nat_plus: ℕ+, 
subtype_rel: A ⊆r B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
decidable: Dec(P), 
squash: ↓T, 
infix_ap: x f y, 
nequal: a ≠ b ∈ T , 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
sq_stable: SqStable(P), 
cand: A c∧ B, 
rev_uimplies: rev_uimplies(P;Q), 
subtract: n - m, 
inject: Inj(A;B;f)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
rng_prod_empty_lemma, 
int_seg_wf, 
int_seg_properties, 
subtract-1-ge-0, 
rng_car_wf, 
nat_wf, 
crng_wf, 
rng_one_wf, 
istype-false, 
le_wf, 
rng_lsum_cons_lemma, 
rng_lsum_nil_lemma, 
rng_plus_zero, 
infix_ap_wf, 
rng_plus_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
functions-list_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
equal_wf, 
istype-universe, 
rng_times_wf, 
decidable__lt, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtract_wf, 
rng_lsum_wf, 
rng_prod_wf, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
list_wf, 
rng_wf, 
functions-list-0, 
subtype_rel_self, 
rng_prod_unroll_hi, 
rng_times_over_plus, 
rng_lsum-split, 
filter_wf5, 
l_member_wf, 
rng_times_lsum_r, 
rng_lsum_map, 
int_subtype_base, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
map_wf, 
rng_lsum_functionality_wrt_permutation, 
set_subtype_base, 
lelt_wf, 
sq_stable__no_repeats, 
permutation-when-no_repeats, 
no_repeats_filter, 
member_filter, 
member-functions-list, 
member-map, 
decidable__equal_int, 
subtype_rel_function, 
int_seg_subtype, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
all_wf, 
no_repeats_wf, 
no_repeats-functions-list, 
false_wf, 
no_repeats_map, 
set_wf, 
equal-wf-T-base, 
not_wf, 
bnot_wf, 
assert_wf, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
filter_type, 
equal-wf-base, 
btrue_neq_bfalse, 
eq_int_eq_true, 
and_wf, 
bfalse_wf, 
assert_elim
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
inhabitedIsType, 
functionIsTypeImplies, 
functionIsType, 
productElimination, 
because_Cache, 
functionEquality, 
dependent_set_memberEquality_alt, 
equalitySymmetry, 
applyEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalityIsType1, 
promote_hyp, 
instantiate, 
cumulativity, 
imageElimination, 
universeEquality, 
productIsType, 
imageMemberEquality, 
baseClosed, 
setIsType, 
equalityIsType2, 
baseApply, 
closedConclusion, 
hyp_replacement, 
intEquality, 
addEquality, 
minusEquality, 
multiplyEquality, 
functionExtensionality_alt, 
applyLambdaEquality, 
productEquality, 
setEquality, 
functionExtensionality, 
lambdaFormation, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
impliesFunctionality, 
levelHypothesis, 
addLevel
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[F,G:\mBbbN{}n  {}\mrightarrow{}  |r|].
    ((\mPi{}(r)  0 
                  \mleq{}  i 
                  <  n
          F[i]  +r  G[i])
    =  \mSigma{}\{r\}  p  \mmember{}  functions-list(n;2).  (\mPi{}(r)  0 
                                                                                \mleq{}  i 
                                                                                <  n
                                                                        if  (p  i  =\msubz{}  0)  then  F[i]  else  G[i]  fi  ))
Date html generated:
2019_10_16-AM-11_27_08
Last ObjectModification:
2018_10_10-AM-10_15_55
Theory : matrices
Home
Index