Nuprl Lemma : slln-lemma1
∀p:FinProbSpace. ∀f:ℕ ⟶ ℕ. ∀X:n:ℕ ⟶ RandomVariable(p;f[n]). ∀s,k:ℚ.
  ((∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n]))
     ⇒ (∃B:ℚ. ((0 ≤ B) ∧ (∀n:ℕ. (E(f[n];(x.(x * x) * x * x) o rv-partial-sum(n;i.X[i])) ≤ (B * n * n)))))) supposing 
     ((∀n:ℕ
         ((E(f[n];X[n]) = 0 ∈ ℚ)
         ∧ (E(f[n];(x.x * x) o X[n]) = s ∈ ℚ)
         ∧ (E(f[n];(x.(x * x) * x * x) o X[n]) = k ∈ ℚ))) and 
     (∀n:ℕ. ∀i:ℕn.  f[i] < f[n]))
Proof
Definitions occuring in Statement : 
rv-partial-sum: rv-partial-sum(n;i.X[i]), 
rv-compose: (x.F[x]) o X, 
rv-disjoint: rv-disjoint(p;n;X;Y), 
expectation: E(n;F), 
random-variable: RandomVariable(p;n), 
finite-prob-space: FinProbSpace, 
qle: r ≤ s, 
qmul: r * s, 
rationals: ℚ, 
int_seg: {i..j-}, 
nat: ℕ, 
less_than: a < b, 
uimplies: b supposing a, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
nat: ℕ, 
int_seg: {i..j-}, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
so_lambda: λ2x.t[x], 
guard: {T}, 
rv-compose: (x.F[x]) o X, 
rv-const: a, 
rv-le: X ≤ Y, 
random-variable: RandomVariable(p;n), 
finite-prob-space: FinProbSpace, 
p-outcome: Outcome, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
rv-partial-sum: rv-partial-sum(n;i.X[i]), 
qsum: Σa ≤ j < b. E[j], 
rng_sum: rng_sum, 
mon_itop: Π lb ≤ i < ub. E[i], 
itop: Π(op,id) lb ≤ i < ub. E[i], 
ycomb: Y, 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
bfalse: ff, 
grp_id: e, 
pi1: fst(t), 
pi2: snd(t), 
add_grp_of_rng: r↓+gp, 
rng_zero: 0, 
qrng: <ℚ+*>, 
qmul: r * s, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
btrue: tt, 
true: True, 
qle: r ≤ s, 
grp_leq: a ≤ b, 
assert: ↑b, 
infix_ap: x f y, 
grp_le: ≤b, 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qadd: r + s, 
qeq: qeq(r;s), 
eq_int: (i =z j), 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rv-add: X + Y, 
rv-mul: X * Y, 
rv-scale: q*X, 
less_than: a < b, 
rev_uimplies: rev_uimplies(P;Q), 
qge: a ≥ b
Lemmas referenced : 
member-less_than, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
int_seg_wf, 
rv-disjoint_wf, 
int_seg_subtype_nat, 
istype-false, 
expectation_wf, 
int-subtype-rationals, 
rv-compose_wf, 
qmul_wf, 
istype-less_than, 
rationals_wf, 
random-variable_wf, 
finite-prob-space_wf, 
expectation-rv-const, 
expectation-monotone, 
rv-const_wf, 
qle_wf, 
q-square-non-neg, 
subtype_rel_self, 
length_wf, 
p-outcome_wf, 
decidable__qle, 
qle_reflexivity, 
qle_complement_qorder, 
qle_weakening_lt_qorder, 
primrec-wf2, 
expectation-constant, 
istype-top, 
subtype_rel_dep_function, 
top_wf, 
equal_wf, 
qsum_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
qadd_wf, 
and_wf, 
squash_wf, 
true_wf, 
qmul_over_plus_qrng, 
qmul_zero_qrng, 
mon_ident_q, 
iff_weakening_equal, 
rv-partial-sum_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__lt, 
istype-universe, 
sum_unroll_hi_q, 
int_seg_subtype, 
le_weakening2, 
qle_witness, 
rv-add_wf, 
qmul_assoc_qrng, 
qmul_comm_qrng, 
qmul_ac_1_qrng, 
mon_assoc_q, 
qadd_ac_1_q, 
qadd_comm_q, 
q_distrib, 
qmul_ident, 
subtype_rel-random-variable, 
rv-mul_wf, 
rv-scale_wf, 
expectation-rv-add, 
expectation-rv-disjoint, 
rv-disjoint-compose, 
length_wf_nat, 
rv-disjoint-rv-partial-sum, 
rv-disjoint-monotone-in-first, 
expectation-rv-scale, 
expectation-monotone-in-first, 
rv-disjoint-symmetry, 
expectation-qsum, 
nat_wf, 
qsum-const, 
qle_functionality_wrt_implies, 
qadd_functionality_wrt_qle, 
qle_weakening_eq_qorder, 
qle-int, 
qmul_functionality_wrt_qle, 
non-neg-qmul, 
expectation-non-neg, 
qsub-sub, 
qmul_over_minus_qrng, 
qmul_one_qrng, 
qinv_inv_q, 
qmul_assoc, 
qadd_preserves_qle, 
qadd_inv_assoc_q, 
qinverse_q, 
qle_transitivity_qorder, 
qsub_wf, 
rv-disjoint-rv-scale, 
istype_wf, 
le_weakening, 
member_wf, 
subtype_rel_set, 
le_wf, 
qmul_preserves_qle2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
productElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
because_Cache, 
functionIsTypeImplies, 
inhabitedIsType, 
independent_pairEquality, 
axiomEquality, 
functionIsType, 
productIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
functionEquality, 
setIsType, 
intEquality, 
functionExtensionality_alt, 
closedConclusion, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
promote_hyp, 
functionExtensionality, 
minusEquality, 
productEquality, 
cumulativity
Latex:
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).  \mforall{}s,k:\mBbbQ{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    rv-disjoint(p;f[n];X[i];X[n]))
          {}\mRightarrow{}  (\mexists{}B:\mBbbQ{}
                    ((0  \mleq{}  B)
                    \mwedge{}  (\mforall{}n:\mBbbN{}
                              (E(f[n];(x.(x  *  x)  *  x  *  x)  o  rv-partial-sum(n;i.X[i]))  \mleq{}  (B  *  n  *  n))))))  supposing 
          ((\mforall{}n:\mBbbN{}
                  ((E(f[n];X[n])  =  0)
                  \mwedge{}  (E(f[n];(x.x  *  x)  o  X[n])  =  s)
                  \mwedge{}  (E(f[n];(x.(x  *  x)  *  x  *  x)  o  X[n])  =  k)))  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]))
Date html generated:
2019_10_16-PM-00_40_12
Last ObjectModification:
2018_12_08-AM-11_55_39
Theory : randomness
Home
Index