Nuprl Lemma : sbhomout-correct
∀[a,b,c,d:ℕ].
  (0 < a + b
  ⇒ 0 < c + d
  ⇒ (∀[L:ℕ2 List]
        (sbhomout(a;b;c;d;L) = let m,n = sbdecode(L) in sbcode((a * m) + (b * n);(c * m) + (d * n)) ∈ (ℕ2 List))))
Proof
Definitions occuring in Statement : 
sbhomout: sbhomout(a;b;c;d;L), 
sbdecode: sbdecode(L), 
sbcode: sbcode(m;n), 
list: T List, 
int_seg: {i..j-}, 
nat: ℕ, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
spread: spread def, 
multiply: n * m, 
add: n + m, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
nat_plus: ℕ+, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sbhomout: sbhomout(a;b;c;d;L), 
nil: [], 
it: ⋅, 
sbdecode: sbdecode(L), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
squash: ↓T, 
le: A ≤ B, 
uiff: uiff(P;Q), 
true: True, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
cons: [a / b], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
mtge1: mtge1(a;b;c;d), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
has-value: (a)↓, 
less_than': less_than'(a;b), 
less_than: a < b, 
sbcode: sbcode(m;n), 
subtract: n - m, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
mul_bounds_1a, 
nat_plus_subtype_nat, 
decidable__lt, 
mul_preserves_lt, 
nat_plus_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
less_than_wf, 
nat_plus_wf, 
nat_wf, 
list_induction, 
int_seg_wf, 
all_wf, 
uall_wf, 
le_wf, 
equal_wf, 
list_wf, 
sbhomout_wf, 
sbdecode_wf, 
sbcode_wf, 
ge_wf, 
decidable__le, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
squash_wf, 
true_wf, 
add-is-int-iff, 
int_subtype_base, 
mul-commutes, 
one-mul, 
int_seg_properties, 
spread_cons_lemma, 
iff_weakening_equal, 
mtge1_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
assert_wf, 
bor_wf, 
band_wf, 
le_int_wf, 
lt_int_wf, 
or_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_band, 
assert_of_le_int, 
assert_of_lt_int, 
value-type-has-value, 
int-value-type, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
false_wf, 
lelt_wf, 
intformor_wf, 
int_formula_prop_or_lemma, 
cons_wf, 
top_wf, 
mul_preserves_le, 
mul-distributes-right, 
add-associates, 
minus-add, 
minus-one-mul, 
mul-associates, 
add-swap, 
add-commutes, 
eq_int_wf, 
assert_of_eq_int, 
reduce_cons_lemma, 
neg_assert_of_eq_int, 
add_nat_plus, 
multiply_nat_plus
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
productElimination, 
setElimination, 
rename, 
unionElimination, 
independent_isectElimination, 
addEquality, 
multiplyEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
functionEquality, 
independent_functionElimination, 
productEquality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
intWeakElimination, 
axiomEquality, 
isect_memberFormation, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
imageMemberEquality, 
universeEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
orFunctionality, 
callbyvalueReduce, 
lessCases, 
sqequalAxiom, 
minusEquality, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq, 
applyLambdaEquality
Latex:
\mforall{}[a,b,c,d:\mBbbN{}].
    (0  <  a  +  b
    {}\mRightarrow{}  0  <  c  +  d
    {}\mRightarrow{}  (\mforall{}[L:\mBbbN{}2  List]
                (sbhomout(a;b;c;d;L)
                =  let  m,n  =  sbdecode(L) 
                    in  sbcode((a  *  m)  +  (b  *  n);(c  *  m)  +  (d  *  n)))))
Date html generated:
2018_05_21-PM-11_42_24
Last ObjectModification:
2017_07_26-PM-06_42_52
Theory : rationals
Home
Index