FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  x:AB(x) == x:AB(x)

is mentioned by

Thm*  n:{1...}. !f:(Prime). f is a factorization of n[fta_mset]
Thm*  n:f,g:(Prime).
Thm*  f is a factorization of n  g is a factorization of n  f = g
[prime_factorization_mset_unique]
Thm*  n:{1...}. f:(Prime). f is a factorization of n[prime_factorization_exists2]
Thm*  a,b:f:({a..b}), x:{a..b}. complete_intseg_mset(abf)(x) = f(x)[complete_intseg_mset_isext]
Thm*  a,b:f:({a..b}), x:.
Thm*  a  x < b  complete_intseg_mset(abf)(x) = 0
[complete_intseg_mset_ismin]
Thm*  a,b:f:({a..b}). complete_intseg_mset(abf [complete_intseg_mset_wf]
Thm*  i,j,k:i  j < k  i  j < k[lelt_int_vs_lelt]
Thm*  i,j,k:i  j < k  [lelt_int_wf]
Thm*  n:{1...}. 
Thm*  h:({2..(n+1)}). 
Thm*  n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)
[prime_factorization_exists]
Thm*  k:{2...}, n:g:({2..k}).
Thm*   n < k+1
Thm*  
Thm*  (i:{2..k}. ni  0<g(i prime(i))
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; kh))
[prime_factorization_existsLEMMA]
Thm*  k:{2...}, g:({2..k}), z:{2..k}.
Thm*  prime(z)
Thm*  
Thm*  (g':({2..k}). 
Thm*  ({2..k}(g) = {2..k}(g')
Thm*  (g'(z) = 0
Thm*  (& (u:{2..k}. z<u  g'(u) = g(u)))
[can_reduce_composite_factor2]
Thm*  k:{2...}, g:({2..k}), x,y:{2..k}.
Thm*  xy<k
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h)
Thm*  (h(xy) = 0
Thm*  (& (u:{2..k}. xy<u  h(u) = g(u)))
[can_reduce_composite_factor]
Thm*  k:{2...}, g:({2..k}), x:{2..k}.
Thm*  xx<k
Thm*  
Thm*  {2..k}(g) = {2..k}(split_factor1(gx))
Thm*  & split_factor1(gx)(xx) = 0
Thm*  & (u:{2..k}. xx<u  split_factor1(gx)(u) = g(u))
[split_factor1_char]
Thm*  k:{2...}, g:({2..k}), x:{2..k}.
Thm*  xx<k  split_factor1(gx {2..k}
[split_factor1_wf]
Thm*  k:{2...}, g:({2..k}), x,y:{2..k}.
Thm*  xy<k
Thm*  
Thm*  x<y
Thm*  
Thm*  {2..k}(g) = {2..k}(split_factor2(gxy))
Thm*  & split_factor2(gxy)(xy) = 0
Thm*  & (u:{2..k}. xy<u  split_factor2(gxy)(u) = g(u))
[split_factor2_char]
Thm*  k:{2...}, g:({2..k}), x,y:{2..k}.
Thm*  xy<k  split_factor2(gxy {2..k}
[split_factor2_wf]
Thm*  a:{2...}, b:g,h:({a..b}).
Thm*  is_prime_factorization(abg)
Thm*  
Thm*  is_prime_factorization(abh {a..b}(g) = {a..b}(h g = h
[prime_factorization_unique]
Thm*  a:b:f:({a..b}), p:.
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  prime(p)
Thm*  
Thm*  p | {a..b}(f {a..b}(f) = p{a..b}(reduce_factorization(fp))
[remove_prime_factor]
Thm*  a:b:f:({a..b}), p:.
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  prime(p p | {a..b}(f p  {a..b} & 0<f(p)
[prime_factorization_includes_prime_divisors]
Thm*  p:. prime(p (b,z:p | zb  b  0 & p | z)[prime_divs_exp]
Thm*  p:
Thm*  prime(p)
Thm*  
Thm*  (a,b:e:({a..b}).
Thm*  (a<b  p | ( i:{a..b}. e(i))  (i:{a..b}. p | e(i)))
[prime_divs_mul_via_intseg]
Thm*  X:. prime(X (a,b:X | ab  X | a  X | b)[nat_prime_div_each_factor]
Thm*  X:
Thm*  prime(X)
Thm*  
Thm*  (X1:X1<X  prime(X1 (a,b:X1 | ab  X1 | a  X1 | b))
Thm*  
Thm*  (W:. 0<W  W<X  (t:X | tW  X | t))
[nat_prime_div_each_factorLEMMA]
Thm*  a,b:f:({a..b}), j:{a..b}. 0<f(j j | {a..b}(f)[factor_divides_evalfactorization]
Thm*  a,b:f:({a..b}), j:{a..b}.
Thm*  0<f(j)
Thm*  
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  is_prime_factorization(ab; reduce_factorization(fj))
[reduce_fac_pres_isprimefac]
Thm*  a,b:f:({a..b}). SqStable(is_prime_factorization(abf))[sq_stable__is_prime_factorization]
Thm*  f:(Prime), b:. is_prime_factorization(2; b; prime_mset_complete(f))[prime_mset_c_is_prime_f]
Thm*  a,b:f:({a..b}). is_prime_factorization(abf Prop[is_prime_factorization_wf]
Thm*  a,b:f:({a..b}). ba  {a..b}(f) = {a..a}(f)[eval_factorization_nullnorm]
Thm*  a,b:f:({a..b}). ba  {a..b}(f) = 1[eval_factorization_intseg_null]
Thm*  a:b:f:({a..b}), j:{a..b}.
Thm*  2j  0<f(j {a..b}(reduce_factorization(fj))<{a..b}(f)
[eval_reduce_factorization_less]
Thm*  a,b:f:({a..b}), z:{a..b}.
Thm*  0<f(z {a..b}(f) = z{a..b}(reduce_factorization(fz))
[eval_factorization_pluck]
Thm*  a,b:f,g:({a..b}).
Thm*  {a..b}(f){a..b}(g) = {a..b}(i.f(i)+g(i))
[eval_factorization_prod]
Thm*  a:{2...}, b:f:({a..b}).
Thm*  {a..b}(f) = 1  (i:{a..b}. f(i) = 0)
[eval_factorization_not_one]
Thm*  a:{2...}, b:f:({a..b}). {a..b}(f) = 1  f = (x.0)[eval_factorization_one_c]
Thm*  a:{2...}, b:f:({a..b}). {a..b}(f) = 1  (i:{a..b}. 0<f(i))[eval_factorization_one_b]
Thm*  f:(Prime), n,n':.
Thm*  f is a factorization of n  f is a factorization of n'  n = n'
[only_one_factored_by]
Thm*  a:{2...}, b:f:({a..b}). {a..b}(f) = 1  (i:{a..b}. f(i) = 0)[eval_factorization_one]
Thm*  f:(Prime), n:f is a factorization of n  0<n[only_positives_prime_fed]
Thm*  a:b:f:({a..b}). {a..b}(f [eval_factorization_nat_plus]
Thm*  a,b:f:({a..b}), j:{a..b}.
Thm*  0<f(j (i:{a..b}. reduce_factorization(fj)(i)f(i))
[reduce_factorization_bound]
Thm*  a,b:f,g:({a..b}), j:{a..b}.
Thm*  0<f(j)
Thm*  
Thm*  0<g(j reduce_factorization(fj) = reduce_factorization(gj f = g
[reduce_factorization_cancel]
Thm*  a,b:f:({a..b}), j:{a..b}.
Thm*  0<f(j reduce_factorization(fj {a..b}
[reduce_factorization_wf]
Thm*  a,b:j:{a..b}. {a..b}(trivial_factorization(j)) = j[eval_trivial_factorization]
Thm*  x,y:x  y  trivial_factorization(x)(y) = 0  [trivial_factorization_comp2]
Thm*  x,y:x = y  trivial_factorization(x)(y) = 1  [trivial_factorization_comp1]
Thm*  a,b:z:{a..b}. trivial_factorization(z {a..b}[trivial_factorization_wf]
Thm*  a,c,b:f:({a..b}).
Thm*  ac  c<b  {a..b}(f) = {a..c}(f)cf(c){c+1..b}(f)
[eval_factorization_split_pluck]
Thm*  n:f,g:(Prime).
Thm*  f is a factorization of n
Thm*  
Thm*  g is a factorization of n
Thm*  
Thm*  (x:{2..(n+1)}. prime_mset_complete(f)(x) = prime_mset_complete(g)(x))
Thm*  
Thm*  f = g
[prime_factorization_limit]
Thm*  f:(Prime), k:f is a factorization of k  Prop[prime_factorization_of_wf]
Thm*  a,c,b:f:({a..b}).
Thm*  ac  cb  {a..b}(f) = {a..c}(f){c..b}(f)
[eval_factorization_split_mid]
Thm*  a,b:f:({a..b}). {a..b}(f [eval_factorization_wf]
Thm*  f:(Prime), x:prime(x prime_mset_complete(f)(x) = 0[prime_mset_complete_ismin]
Thm*  f:(Prime), x:Prime. prime_mset_complete(f)(x) = f(x)[prime_mset_complete_isext]
Thm*  f:(Prime). prime_mset_complete(f [prime_mset_complete_wf]
Thm*  a,b:P:({a..b}Prop), n:{(a+1)..(b+1)}.
Thm*  P(n-1)  (i:{a..b}. ni  P(i))  (i:{a..b}. n-1i  P(i))
[extend_intseg_upperpart_down]
Def  is_prime_factorization(abf) == i:{a..b}. 0<f(i prime(i)[is_prime_factorization]
Def  f is a factorization of k
Def  == (x:Primek<x  f(x) = 0) & k = {2..k+1}(prime_mset_complete(f))
[prime_factorization_of]

In prior sections: core well fnd int 1 bool 1 rel 1 quot 1 LogicSupplement int 2 union num thy 1 SimpleMulFacts IteratedBinops

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

FTA Sections DiscrMathExt Doc