is mentioned by
[chessboard_example] | |
[is_list_mem_null] | |
Thm* (i:a. P(i) f(i) = 1 2) ({x:a| P(x) } ~ (Msize(f))) | [card_st_vs_msize] |
[surj_typing_imp_le] | |
[nsub_surj_imp_a_rev_inj2] | |
Thm* IsEqFun(B;e) Thm* Thm* (a:, f:(a onto B). (y.least x:. (f(x)) e y) B inj a) | [nsub_surj_imp_a_rev_inj_gen] |
[dedekind_imp_nonfin] | |
[dededing_imp_unb_inf] | |
[dedekind_inf_imp_inf] | |
[compose_iter_inverses] | |
[compose_iter_bijection] | |
[compose_iter_surjection] | |
[compose_iter_injection] | |
[compose_iter_prod] | |
[compose_iter_sum_comp] | |
[compose_iter_sum] | |
[compose_iter_point_id] | |
[finite_indep_sum_card] | |
[nsub_mul] | |
[nsub_add] | |
[intiseg_intseg] | |
[nsub_intseg] | |
[intseg_shift] | |
[intseg_void] | |
[function_functionality_wrt_one_one_corr] | |
[function_functionality_wrt_one_one_corr_B] | |
[card_pi] | |
Thm* a<b ((i:{a..b}B(i)) ~ ((i:{a..(b-1)}B(i))+B(b-1))) | [card_split_end_sum_intseg_family] |
[card_split_decbl_squash] | |
Thm* (i:A. Dec(P(i))) Thm* Thm* ((i:AB(i)) ~ ((i:{i:A| P(i) }B(i))+(i:{i:A| P(i) }B(i)))) | [card_split_sigma_dom_decbl] |
[card_split_decbl] | |
[product_functionality_wrt_one_one_corr] | |
[product_functionality_wrt_one_one_corr_B] | |
[card_sigma] | |
[set_functionality_wrt_one_one_corr_n_pred] | |
[set_functionality_wrt_one_one_corr_n_pred2] | |
Thm* Thm* (x:A. B(x) B'(f(x))) ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype_sq] |
Thm* Thm* (x:A. B(x) B'(f(x))) ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype] |
[union_functionality_wrt_one_one_corr] | |
[one_one_corr_fams_indep_if_one_one_corr] | |
[one_one_corr_fams_if_bij_A] | |
[one_one_corr_fams_if_one_one_corr_B] | |
[bij_imp_exists_inv2] | |
[partition_type] | |
[counting_is_unique] | |
[absurd_nonfinite_imp_infinite] | |
[nonfin_eqv_unb_inf_iff_negnegelim] | |
[absurd_nonfin_imp_unb_inf] | |
[negnegelim_imp_notfin_imp_unb_inf] | |
[ooc_preserves_infiniteness] | |
[ooc_preserves_unb_inf] | |
[infinite_imp_nonfinite] | |
[unb_inf_not_fin] | |
[bij_imp_exists_inv_version2] | |
[fun_with_inv_is_bij_version2] | |
[fun_with_inv2_is_bij_rev] | |
[fun_with_inv2_is_bij] | |
[parallel_conjunct_imp] | |
[left_inv_of_surj_is_right_inv] | |
[inv_funs_2_unique] | |
[one_one_corr_2_transitivity] | |
[one_one_corr_2_inversion] | |
[one_one_corr_2_functionality_wrt_one_one_corr] | |
[inhabited_functionality_wrt_one_one_corr] | |
[iff_weakening_wrt_one_one_corr_2] | |
[fun_with_inv2_is_surj_rev] | |
[injection_type_functionality_wrt_ooc] | |
[invfuns_are_inj] | |
[ooc_preserves_dededkind_inf] | |
[fun_with_inv2_is_inj_rev] | |
Thm* (x:A. B(x)) ~ (x':A'. B'(x')) (x':A'. B'(x')) ~ (x:A. B(x)) | [one_one_corr_fams_sym] |
[surjection_type_functionality_wrt_ooc] | |
[invfuns_are_surj] | |
[inv_funs_2_sym] | |
Thm* (x:k. y:B(x). Q(x;y)) (f:(x:kB(x)). x:k. Q(x;f(x))) | [dep_finite_choice] |
Thm* (x:k. y:A. Q(x;y)) (f:(kA). x:k. Q(x;f(x))) | [finite_choice] |
Thm* Thm* ((x:AB(x)) ~ ((x:A st P(x)B(x))(x:A st P(x)B(x)))) | [card_split_prod_intseg_family_decbl] |
[comp_preserves_bij] | |
Thm* (x:A. B(x)) ~ (x':A'. B'(x')) Thm* Thm* (x':A'. B'(x')) ~ (x'':A''. B''(x'')) (x:A. B(x)) ~ (x'':A''. B''(x'')) | [one_one_corr_fams_trans] |
[inv_pair_functionality_wrt_one_one_corr] | |
[surjection_type_surjection] | |
[comp_preserves_surj] | |
[comp_preserves_inj] | |
[unboundedly_imp_productively_infinite] | |
[factorial_via_intseg_step] | |
Thm* (i:. Dec(P(i))) ({i:| P(i) & (j:. j<i P(j)) }) | [least_exists2] |
Thm* (i:k. Dec(P(i))) ({i:k| P(i) & (j:i. P(j)) }) | [least_exists] |
[card_sum_family_intseg_singleton_elim] | |
[one_one_corr_2_weakening_wrt] | |
[card_prod_family_intseg_singleton_elim] | |
[nsub_delete] | |
Thm* a'-a = 1 (B:({a..a'}Type). (i:{a..a'}B(i)) ~ ({a:}B(a))) | [card_sum_family_singleton_vs_intseg] |
Thm* (A) & (Trans x,y:A. R(x;y)) & (x:A. y:A. R(x;y)) Thm* Thm* (k:. f:(kA). i,j:k. i<j R(f(i);f(j))) | [no_finite_model_lemma] |
[ooc_preserves_finiteness] | |
Thm* IsEqFun(B;e) (a:, f:(a onto B), y:B. f(least x:. (f(x)) e y) = y) | [nsub_surj_least_preimage_works_gen] |
Thm* IsEqFun(B;e) (a:, f:(a onto B), y:B. (least x:. (f(x)) e y) a) | [nsub_surj_least_preimage_total_gen] |
[nsub_inj_discr_range_bijtype] | |
Thm* Thm* (k:, f:(k inj A). Thm* ({a:A| i:k. a = f(i) } Type Thm* (& f k{a:A| i:k. a = f(i) } Thm* (& Bij(k; {a:A| i:k. a = f(i) }; f)) | [nsub_inj_discr_range_bij] |
[nsub_discr_range_surjtype] | |
Thm* Thm* (k:, f:(kA). Thm* ({a:A| i:k. a = f(i) } Type Thm* (& f k{a:A| i:k. a = f(i) } Thm* (& Surj(k; {a:A| i:k. a = f(i) }; f)) | [nsub_discr_range_surj] |
Thm* (least i:. p(i)) {i:| p(i) & (j:. j<i p(j)) } | [least_characterized2] |
[fun_with_inv2_is_surj] | |
[fun_with_inv2_is_inj] | |
[one_one_corr_2_functionality_wrt_eq] | |
[pigeon_hole] | |
[inj_imp_le2] | |
[inj_typing_imp_le] | |
[inj_imp_le] | |
[finite_inj_counter_example] | |
[delete_fenum_value_is_fenum] | |
[delete_fenum_value_is_inj] | |
Thm* Thm* (i:m. f(i) = k (Replace value k by f(m) in f)(i) = f(i) k) | [delete_fenum_value_comp2] |
Thm* Thm* (i:m. f(i) = k (Replace value k by f(m) in f)(i) = f(m) k) | [delete_fenum_value_comp1] |
[delete_fenum_value_wf] | |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* (Bij({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (Bij(Replace value k by f(m) in f)) | [delete_fenum_value_is_fenum_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* (Inj({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* ((Replace value k by f(m) in f) Thm* ( {u:| P(u) & u = m }{v:| Q(v) & v = k } Thm* (& Inj({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (& Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_genW] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }, i:{u:| P(u) & u = m }. Thm* (f(i) = k Thm* ( Thm* ((Replace value k by f(m) in f)(i) = f(i) {v:| Q(v) & v = k }) | [delete_fenum_value_comp2_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }, i:{u:| P(u) & u = m }. Thm* (f(i) = k Thm* ( Thm* ((Replace value k by f(m) in f)(i) = f(m) {v:| Q(v) & v = k }) | [delete_fenum_value_comp1_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* ((Replace value k by f(m) in f) Thm* ( {u:| P(u) & u = m }{v:| Q(v) & v = k }) | [delete_fenum_value_wf_gen] |
[inj_from_empty_unique] | |
Thm* a'-a = 1 (B:({a..a'}Type). (i:{a..a'}B(i)) =ext ({a:}B(a))) | [exteq_sum_family_singleton_vs_intseg] |
Thm* a'-a = 1 (B:({a..a'}Type). (i:{a..a'}B(i)) =ext ({a:}B(a))) | [exteq_prod_family_singleton_vs_intseg] |
[exteq_singleton_vs_intseg] | |
[ndiff_vs_diff] | |
Def == x,x':A, y,y':B. R(x;y) & R(x';y') (x = x' y = y') | [rel_1_1_b] |
[rel_1_1] |
In prior sections: core well fnd int 1 bool 1 rel 1 quot 1 LogicSupplement int 2 union num thy 1 SimpleMulFacts IteratedBinops
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html