Nuprl Lemma : exists_det_fun

[T:Type]. ∀[A:T ⟶ ℙ].  ((∀x:T. SqStable(A x))  (detach_fun(T;A) ⇐⇒ ∀x:T. Dec(A x)))


Proof




Definitions occuring in Statement :  detach_fun: detach_fun(T;A) sq_stable: SqStable(P) decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q all: x:A. B[x] member: t ∈ T rev_implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} detach_fun: detach_fun(T;A) decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True bfalse: ff not: ¬A false: False
Lemmas referenced :  detach_fun_wf all_wf decidable_wf sq_stable_wf detach_fun_properties decidable_functionality assert_wf decidable__assert isl_wf not_wf iff_wf equal_wf true_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality independent_functionElimination dependent_functionElimination setElimination rename productElimination dependent_set_memberFormation because_Cache unionEquality unionElimination natural_numberEquality voidElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  SqStable(A  x))  {}\mRightarrow{}  (detach\_fun(T;A)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:T.  Dec(A  x)))



Date html generated: 2016_05_15-PM-00_00_26
Last ObjectModification: 2015_12_26-PM-11_26_54

Theory : gen_algebra_1


Home Index