Nuprl Lemma : exists_det_fun
∀[T:Type]. ∀[A:T ⟶ ℙ].  ((∀x:T. SqStable(A x)) ⇒ (detach_fun(T;A) ⇐⇒ ∀x:T. Dec(A x)))
Proof
Definitions occuring in Statement : 
detach_fun: detach_fun(T;A), 
sq_stable: SqStable(P), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
detach_fun: detach_fun(T;A), 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
bfalse: ff, 
not: ¬A, 
false: False
Lemmas referenced : 
detach_fun_wf, 
all_wf, 
decidable_wf, 
sq_stable_wf, 
detach_fun_properties, 
decidable_functionality, 
assert_wf, 
decidable__assert, 
isl_wf, 
not_wf, 
iff_wf, 
equal_wf, 
true_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
productElimination, 
dependent_set_memberFormation, 
because_Cache, 
unionEquality, 
unionElimination, 
natural_numberEquality, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  SqStable(A  x))  {}\mRightarrow{}  (detach\_fun(T;A)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:T.  Dec(A  x)))
Date html generated:
2016_05_15-PM-00_00_26
Last ObjectModification:
2015_12_26-PM-11_26_54
Theory : gen_algebra_1
Home
Index