Nuprl Lemma : any_field_is_integ_dom
∀[r:CRng]. IsIntegDom(r) supposing IsField(r)
Proof
Definitions occuring in Statement : 
field_p: IsField(r)
, 
integ_dom_p: IsIntegDom(r)
, 
crng: CRng
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
integ_dom_p: IsIntegDom(r)
, 
field_p: IsField(r)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
crng: CRng
, 
rng: Rng
, 
infix_ap: x f y
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ring_divs: a | b in r
, 
exists: ∃x:A. B[x]
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
rng_car_wf, 
rng_times_wf, 
rng_zero_wf, 
not_wf, 
rng_one_wf, 
nequal_wf, 
all_wf, 
ring_divs_wf, 
crng_wf, 
infix_ap_wf, 
squash_wf, 
true_wf, 
rng_times_assoc, 
rng_times_one, 
iff_weakening_equal, 
crng_times_comm, 
rng_times_zero
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
independent_pairFormation, 
lambdaFormation, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
productEquality, 
functionEquality, 
isect_memberEquality, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[r:CRng].  IsIntegDom(r)  supposing  IsField(r)
Date html generated:
2017_10_01-AM-08_17_38
Last ObjectModification:
2017_02_28-PM-02_02_54
Theory : rings_1
Home
Index