Nuprl Lemma : any_field_is_integ_dom

[r:CRng]. IsIntegDom(r) supposing IsField(r)


Proof




Definitions occuring in Statement :  field_p: IsField(r) integ_dom_p: IsIntegDom(r) crng: CRng uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  integ_dom_p: IsIntegDom(r) field_p: IsField(r) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q prop: crng: CRng rng: Rng infix_ap: y nequal: a ≠ b ∈  not: ¬A false: False so_lambda: λ2x.t[x] so_apply: x[s] ring_divs: in r exists: x:A. B[x] true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf rng_car_wf rng_times_wf rng_zero_wf not_wf rng_one_wf nequal_wf all_wf ring_divs_wf crng_wf infix_ap_wf squash_wf true_wf rng_times_assoc rng_times_one iff_weakening_equal crng_times_comm rng_times_zero
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis independent_pairFormation lambdaFormation extract_by_obid isectElimination setElimination rename hypothesisEquality applyEquality because_Cache independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality productEquality functionEquality isect_memberEquality voidElimination equalityTransitivity equalitySymmetry independent_functionElimination equalityUniverse levelHypothesis natural_numberEquality imageElimination universeEquality imageMemberEquality baseClosed independent_isectElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[r:CRng].  IsIntegDom(r)  supposing  IsField(r)



Date html generated: 2017_10_01-AM-08_17_38
Last ObjectModification: 2017_02_28-PM-02_02_54

Theory : rings_1


Home Index