Nuprl Lemma : bpa-add_wf

[p:ℕ+]. ∀[x,y:basic-padic(p)].  (bpa-add(p;x;y) ∈ basic-padic(p))


Proof




Definitions occuring in Statement :  bpa-add: bpa-add(p;x;y) basic-padic: basic-padic(p) nat_plus: + uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T basic-padic: basic-padic(p) bpa-add: bpa-add(p;x;y) and: P ∧ Q cand: c∧ B all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q implies:  Q or: P ∨ Q nat: nat_plus: + ge: i ≥  decidable: Dec(P) uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: guard: {T} has-value: (a)↓ le: A ≤ B
Lemmas referenced :  imax_ub nat_properties nat_plus_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf le_wf value-type-has-value int-value-type imax_wf fastexp_wf subtract_wf intformand_wf itermConstant_wf itermSubtract_wf int_formula_prop_and_lemma int_term_value_constant_lemma int_term_value_subtract_lemma p-add_wf p-mul_wf p-int_wf basic-padic_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule extract_by_obid dependent_functionElimination because_Cache independent_functionElimination inlFormation isectElimination hypothesisEquality hypothesis setElimination rename unionElimination natural_numberEquality independent_isectElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation inrFormation callbyvalueReduce dependent_set_memberEquality independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x,y:basic-padic(p)].    (bpa-add(p;x;y)  \mmember{}  basic-padic(p))



Date html generated: 2018_05_21-PM-03_23_38
Last ObjectModification: 2018_05_19-AM-08_21_54

Theory : rings_1


Home Index