Nuprl Lemma : alg_act_is_rng_chom
∀a:CRng. ∀m:algebra{i:l}(a).  rng_chom_p(a;m↓rg;λx:|a|. m.act x m.one)
Proof
Definitions occuring in Statement : 
algebra: algebra{i:l}(A)
, 
rng_of_alg: a↓rg
, 
alg_act: a.act
, 
alg_one: a.one
, 
tlambda: λx:T. b[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
rng_chom_p: rng_chom_p(r;s;f)
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
rng_chom_p: rng_chom_p(r;s;f)
, 
and: P ∧ Q
, 
rng_hom_p: rng_hom_p(r;s;f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng_of_alg: a↓rg
, 
rng_car: |r|
, 
pi1: fst(t)
, 
tlambda: λx:T. b[x]
, 
rng_plus: +r
, 
pi2: snd(t)
, 
crng: CRng
, 
rng: Rng
, 
rng_times: *
, 
rng_one: 1
, 
squash: ↓T
, 
prop: ℙ
, 
algebra: algebra{i:l}(A)
, 
module: A-Module
, 
infix_ap: x f y
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
rng_car_wf, 
algebra_wf, 
crng_wf, 
equal_wf, 
squash_wf, 
true_wf, 
alg_car_wf, 
module_act_plus, 
alg_one_wf, 
infix_ap_wf, 
alg_plus_wf, 
alg_act_wf, 
iff_weakening_equal, 
rng_times_wf, 
algebra_act_times_r, 
module_action_p, 
algebra_times_one, 
crng_times_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}a:CRng.  \mforall{}m:algebra\{i:l\}(a).    rng\_chom\_p(a;m\mdownarrow{}rg;\mlambda{}x:|a|.  m.act  x  m.one)
Date html generated:
2017_10_01-AM-09_52_03
Last ObjectModification:
2017_03_03-PM-00_46_47
Theory : algebras_1
Home
Index