Nuprl Lemma : alg_act_is_rng_chom

a:CRng. ∀m:algebra{i:l}(a).  rng_chom_p(a;m↓rg;λx:|a|. m.act m.one)


Proof




Definitions occuring in Statement :  algebra: algebra{i:l}(A) rng_of_alg: a↓rg alg_act: a.act alg_one: a.one tlambda: λx:T. b[x] all: x:A. B[x] apply: a rng_chom_p: rng_chom_p(r;s;f) crng: CRng rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] rng_chom_p: rng_chom_p(r;s;f) and: P ∧ Q rng_hom_p: rng_hom_p(r;s;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) uall: [x:A]. B[x] member: t ∈ T rng_of_alg: a↓rg rng_car: |r| pi1: fst(t) tlambda: λx:T. b[x] rng_plus: +r pi2: snd(t) crng: CRng rng: Rng rng_times: * rng_one: 1 squash: T prop: algebra: algebra{i:l}(A) module: A-Module infix_ap: y true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  rng_car_wf algebra_wf crng_wf equal_wf squash_wf true_wf alg_car_wf module_act_plus alg_one_wf infix_ap_wf alg_plus_wf alg_act_wf iff_weakening_equal rng_times_wf algebra_act_times_r module_action_p algebra_times_one crng_times_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation isect_memberFormation introduction cut sqequalRule hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality isect_memberEquality axiomEquality because_Cache dependent_functionElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}a:CRng.  \mforall{}m:algebra\{i:l\}(a).    rng\_chom\_p(a;m\mdownarrow{}rg;\mlambda{}x:|a|.  m.act  x  m.one)



Date html generated: 2017_10_01-AM-09_52_03
Last ObjectModification: 2017_03_03-PM-00_46_47

Theory : algebras_1


Home Index