Nuprl Lemma : bsubmset_transitivity
∀s:DSet. ∀a,b,c:MSet{s}.  ((↑(a ⊆b b)) ⇒ (↑(b ⊆b c)) ⇒ (↑(a ⊆b c)))
Proof
Definitions occuring in Statement : 
bsubmset: a ⊆b b, 
mset: MSet{s}, 
assert: ↑b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
dset: DSet
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
dset: DSet, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
all_mset_elim, 
assert_wf, 
bsubmset_wf, 
mk_mset_wf, 
mset_wf, 
sq_stable__all, 
sq_stable_from_decidable, 
decidable__assert, 
all_wf, 
dset_wf, 
list_wf, 
set_car_wf, 
assert_functionality_wrt_uiff, 
bsublist_wf, 
bsubmset_elim, 
bsublist_transitivity
Rules used in proof : 
cut, 
addLevel, 
allFunctionality, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
lambdaFormation, 
productElimination, 
because_Cache, 
levelHypothesis, 
allLevelFunctionality, 
cumulativity, 
instantiate, 
setElimination, 
rename, 
applyEquality, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}s:DSet.  \mforall{}a,b,c:MSet\{s\}.    ((\muparrow{}(a  \msubseteq{}\msubb{}  b))  {}\mRightarrow{}  (\muparrow{}(b  \msubseteq{}\msubb{}  c))  {}\mRightarrow{}  (\muparrow{}(a  \msubseteq{}\msubb{}  c)))
Date html generated:
2016_05_16-AM-07_50_47
Last ObjectModification:
2015_12_28-PM-06_01_19
Theory : mset
Home
Index