Nuprl Lemma : bsubmset_transitivity

s:DSet. ∀a,b,c:MSet{s}.  ((↑(a ⊆b b))  (↑(b ⊆b c))  (↑(a ⊆b c)))


Proof




Definitions occuring in Statement :  bsubmset: a ⊆b b mset: MSet{s} assert: b all: x:A. B[x] implies:  Q dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: uall: [x:A]. B[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q dset: DSet subtype_rel: A ⊆B uimplies: supposing a guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  all_mset_elim assert_wf bsubmset_wf mk_mset_wf mset_wf sq_stable__all sq_stable_from_decidable decidable__assert all_wf dset_wf list_wf set_car_wf assert_functionality_wrt_uiff bsublist_wf bsubmset_elim bsublist_transitivity
Rules used in proof :  cut addLevel allFunctionality lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality functionEquality isectElimination hypothesis independent_functionElimination lambdaFormation productElimination because_Cache levelHypothesis allLevelFunctionality cumulativity instantiate setElimination rename applyEquality universeEquality independent_isectElimination

Latex:
\mforall{}s:DSet.  \mforall{}a,b,c:MSet\{s\}.    ((\muparrow{}(a  \msubseteq{}\msubb{}  b))  {}\mRightarrow{}  (\muparrow{}(b  \msubseteq{}\msubb{}  c))  {}\mRightarrow{}  (\muparrow{}(a  \msubseteq{}\msubb{}  c)))



Date html generated: 2016_05_16-AM-07_50_47
Last ObjectModification: 2015_12_28-PM-06_01_19

Theory : mset


Home Index