Nuprl Lemma : txpose_perm_order_2

n:ℕ. ∀i,j:ℕn.  (txpose_perm(i;j) txpose_perm(i;j) id_perm() ∈ Sym(n))


Proof




Definitions occuring in Statement :  txpose_perm: txpose_perm sym_grp: Sym(n) comp_perm: comp_perm id_perm: id_perm() int_seg: {i..j-} nat: all: x:A. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: sym_grp: Sym(n) perm: Perm(T) prop: txpose_perm: txpose_perm comp_perm: comp_perm mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) perm_b: p.b pi2: snd(t) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q id_perm: id_perm()
Lemmas referenced :  int_seg_wf nat_wf inv_funs_wf perm_f_wf perm_b_wf equal_wf squash_wf true_wf istype-universe perm_sig_wf mk_perm_wf swap_order_2 subtype_rel_self iff_weakening_equal identity_wf id_perm_wf perm_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut equalitySymmetry hypothesis inhabitedIsType hypothesisEquality universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename dependent_set_memberEquality_alt because_Cache dependent_functionElimination sqequalRule applyEquality lambdaEquality_alt imageElimination equalityTransitivity universeEquality functionIsType imageMemberEquality baseClosed instantiate independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    (txpose\_perm(i;j)  O  txpose\_perm(i;j)  =  id\_perm())



Date html generated: 2019_10_16-PM-00_59_26
Last ObjectModification: 2018_10_08-AM-09_26_36

Theory : perms_1


Home Index