Nuprl Lemma : omralist_car_properties

g:OCMon. ∀r:CDRng. ∀ws:|omral(g;r)|.  ((↑sd_ordered(map(λx.(fst(x));ws))) ∧ (¬↑(0 ∈b map(λx.(snd(x));ws))))


Proof




Definitions occuring in Statement :  omralist: omral(g;r) sd_ordered: sd_ordered(as) mem: a ∈b as map: map(f;as) assert: b pi1: fst(t) pi2: snd(t) all: x:A. B[x] not: ¬A and: P ∧ Q lambda: λx.A[x] add_grp_of_rng: r↓+gp cdrng: CDRng rng_zero: 0 oset_of_ocmon: g↓oset ocmon: OCMon dset_of_mon: g↓set set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B ocmon: OCMon omon: OMon so_lambda: λ2x.t[x] prop: and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) pi1: fst(t) omralist: omral(g;r)
Lemmas referenced :  oalist_car_properties oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf cdrng_wf ocmon_wf cdrng_is_abdmonoid
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality sqequalRule instantiate hypothesis because_Cache lambdaEquality productEquality setElimination rename cumulativity universeEquality functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ws:|omral(g;r)|.
    ((\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));ws)))  \mwedge{}  (\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ws))))



Date html generated: 2017_10_01-AM-10_04_56
Last ObjectModification: 2017_03_03-PM-01_09_50

Theory : polynom_3


Home Index