Nuprl Lemma : assert-fpf-is-empty

[A:Type]. ∀[B:A ─→ Type]. ∀[f:x:A fp-> B[x]].  uiff(↑fpf-is-empty(f);f = ⊗ ∈ x:A fp-> B[x])


Proof




Definitions occuring in Statement :  fpf-is-empty: fpf-is-empty(f) fpf-empty: fpf: a:A fp-> B[a] assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  eq_int_wf length_wf assert_of_eq_int length_of_null_list nil_wf and_wf equal_wf list_wf l_member_wf pi1_wf_top subtype_rel_product top_wf subtype_top iff_weakening_equal assert_wf assert_witness equal-wf-T-base fpf_wf length_zero null_nil_lemma btrue_wf member-implies-null-eq-bfalse null_wf3 subtype_rel_list btrue_neq_bfalse set_wf
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:x:A  fp->  B[x]].    uiff(\muparrow{}fpf-is-empty(f);f  =  \motimes{})



Date html generated: 2015_07_17-AM-09_16_11
Last ObjectModification: 2015_02_04-PM-05_07_02

Home Index