Nuprl Lemma : fpf-join-dom-sq

[A:Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> Top]. ∀[x:A].  (x ∈ dom(f ⊕ g) x ∈ dom(f) ∨bx ∈ dom(g))


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) bor: p ∨bq uall: [x:A]. B[x] top: Top universe: Type sqequal: t
Lemmas :  subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool deq-member_wf append_wf filter_wf5 l_member_wf bnot_wf bor_wf fpf_wf top_wf deq_wf member_filter assert_wf or_wf iff_wf member_append not_wf assert-deq-member iff_transitivity iff_weakening_uiff assert_of_bor assert_of_bnot equal-wf-T-base eqtt_to_assert eqff_to_assert
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  Top].  \mforall{}[x:A].
    (x  \mmember{}  dom(f  \moplus{}  g)  \msim{}  x  \mmember{}  dom(f)  \mvee{}\msubb{}x  \mmember{}  dom(g))



Date html generated: 2015_07_17-AM-09_19_48
Last ObjectModification: 2015_01_28-AM-07_49_44

Home Index