Nuprl Lemma : fpf-sub-join-symmetry

[A:Type]. ∀[B:A ─→ Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> B[a]].  f ⊕ g ⊆ g ⊕ supposing || g


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf-compatible: || g fpf-sub: f ⊆ g fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type
Lemmas :  fpf-join-dom assert_wf fpf-dom_wf fpf-join_wf top_wf subtype-fpf2 subtype_top fpf-sub_witness fpf-compatible_wf fpf_wf deq_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot fpf-ap_wf equal-wf-T-base bnot_wf not_wf fpf-join-ap-sq uiff_transitivity assert_of_bnot
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  B[a]].    f  \moplus{}  g  \msubseteq{}  g  \moplus{}  f  supposing  f  ||  g



Date html generated: 2015_07_17-AM-09_21_25
Last ObjectModification: 2015_01_28-AM-07_47_56

Home Index