Nuprl Lemma : fpf-union-contains

[A:Type]. ∀[B:A ─→ Type].
  ∀eq:EqDecider(A). ∀f,g:x:A fp-> B[x] List. ∀x:A. ∀R:∩a:A. ((B[a] List) ─→ B[a] ─→ 𝔹).  f(x)?[] ⊆ fpf-union(f;g;eq;R;x)


Proof




Definitions occuring in Statement :  fpf-union: fpf-union(f;g;eq;R;x) fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) l_contains: A ⊆ B nil: [] list: List bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] isect: x:A. B[x] function: x:A ─→ B[x] universe: Type
Lemmas :  fpf-dom_wf subtype-fpf2 top_wf subtype_top list_wf bool_wf eqtt_to_assert l_contains_append fpf-ap_wf filter_wf5 subtype_rel_dep_function l_member_wf subtype_rel_self set_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot l_contains_weakening l_contains_nil nil_wf fpf_wf deq_wf
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}eq:EqDecider(A).  \mforall{}f,g:x:A  fp->  B[x]  List.  \mforall{}x:A.  \mforall{}R:\mcap{}a:A.  ((B[a]  List)  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  \mBbbB{}).
        f(x)?[]  \msubseteq{}  fpf-union(f;g;eq;R;x)



Date html generated: 2015_07_17-AM-09_16_43
Last ObjectModification: 2015_01_28-AM-07_51_51

Home Index