Nuprl Lemma : st-ptr-wf2

[T:Id ─→ Type]. ∀[tab:secret-table(T)].  ptr(tab) ∈ ℕ||tab||  supposing ↑isl(next(tab))


Proof




Definitions occuring in Statement :  st-next: next(tab) st-ptr: ptr(tab) st-length: ||tab||  secret-table: secret-table(T) Id: Id int_seg: {i..j-} assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] natural_number: $n universe: Type
Lemmas :  st-ptr_wf nat_wf zero-le-nat lelt_wf st-length_wf assert_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int btrue_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf bfalse_wf secret-table_wf Id_wf bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].    ptr(tab)  \mmember{}  \mBbbN{}||tab||    supposing  \muparrow{}isl(next(tab))



Date html generated: 2015_07_17-AM-08_56_35
Last ObjectModification: 2015_01_27-PM-01_04_17

Home Index