{ [V:Type]. [A:Id List]. [W:{a:Id| (a  A)}  List List]. [a:{a:Id| (a  A)} \000C].
  [x:ts-reachable(consensus-ts4(V;A;W))]. [i:].
    i  Inning(x;a) supposing (i  fpf-domain(Estimate(x;a))) }

{ Proof }



Definitions occuring in Statement :  consensus-ts4: consensus-ts4(V;A;W) cs-estimate: Estimate(s;a) cs-inning: Inning(s;a) fpf-domain: fpf-domain(f) Id: Id uimplies: b supposing a uall: [x:A]. B[x] le: A  B set: {x:A| B[x]}  list: type List int: universe: Type l_member: (x  l) ts-reachable: ts-reachable(ts)
Definitions :  spread: spread def pi1: fst(t) divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b l_contains: A  B reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) decidable: Dec(P) iff: P  Q squash: T uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) assert: b is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) guard: {T} true: True fpf-cap: f(x)?z so_lambda: x.t[x] filter: filter(P;l) intensional-universe: IType select: l[i] length: ||as|| real: grp_car: |g| subtype: S  T nat: cand: A c B fpf-single: x : v bool: fpf-empty: natural_number: $n minus: -n pair: <a, b> ts-init: ts-init(ts) consensus-rel: CR[x,y] rel_star: R^* cs-inning: Inning(s;a) ts-rel: ts-rel(ts) lambda: x.A[x] void: Void false: False implies: P  Q fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) apply: f a infix_ap: x f y exists: x:A. B[x] le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) consensus-state4: ConsensusState top: Top cs-estimate: Estimate(s;a) fpf-domain: fpf-domain(f) uimplies: b supposing a int: ts-type: ts-type(ts) subtype_rel: A r B consensus-ts4: consensus-ts4(V;A;W) ts-reachable: ts-reachable(ts) prop: Id: Id universe: Type list: type List set: {x:A| B[x]}  l_member: (x  l) equal: s = t all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] isect: x:A. B[x] member: t  T Auto: Error :Auto,  Complete: Error :Complete,  Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  RepeatFor: Error :RepeatFor,  MaAuto: Error :MaAuto,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  transition-system: transition-system{i:l} so_apply: x[s] union: left + right or: P  Q bag: bag(T) deq: EqDecider(T) ma-state: State(ds) fpf-dom: x  dom(f) tag-by: zT rev_implies: P  Q record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B nil: [] RepUR: Error :RepUR,  int-deq: IntDeq fpf-join: f  g cs-precondition: state s may consider v in inning i add: n + m limited-type: LimitedType imax: imax(a;b) cons: [car / cdr] IdLnk: IdLnk consensus-state3: consensus-state3(T) MaName: MaName Knd: Knd sq_type: SQType(T) atom: Atom atom: Atom$n sqequal: s ~ t nat_plus: rationals: dstype: dstype(TypeNames; d; a) string: Error :string
Lemmas :  member_singleton fpf-domain-join product_subtype_base list_subtype_base int_subtype_base decidable__l_member decidable__equal_int subtype_base_sq atom2_subtype_base fpf-trivial-subtype-top decidable__equal_Id cs-precondition_wf fpf-join_wf fpf-single_wf int-deq_wf nil_member squash_wf subtype_rel_function subtype_rel_self subtype_rel_simple_product true_wf consensus-state4_wf top_wf member_wf cs-estimate_wf fpf-domain_wf l_member_wf subtype_rel_wf cs-inning_wf le_wf ts-reachable_wf consensus-ts4_wf ts-type_wf Id_wf nat_wf fpf-domain_wf2 length_wf1 select_wf intensional-universe_wf list-subtype fpf-type fpf_wf subtype-fpf2 subtype-top ts-reachable-induction sq_stable_wf sq_stable__all sq_stable_from_decidable decidable__le not_wf false_wf ts-init_wf_reachable ts-init_wf ts-rel_wf

\mforall{}[V:Type].  \mforall{}[A:Id  List].  \mforall{}[W:\{a:Id|  (a  \mmember{}  A)\}    List  List].  \mforall{}[a:\{a:Id|  (a  \mmember{}  A)\}  ].
\mforall{}[x:ts-reachable(consensus-ts4(V;A;W))].  \mforall{}[i:\mBbbZ{}].
    i  \mleq{}  Inning(x;a)  supposing  (i  \mmember{}  fpf-domain(Estimate(x;a)))


Date html generated: 2011_08_16-AM-09_58_41
Last ObjectModification: 2011_06_18-AM-08_57_11

Home Index