{ [Info,A1,A2,T:Type]. [R:  T  ]. [g1:A1  T]. [g2:A2  T].
  [f1:A1  ]. [f2:A2  ]. [X1:EClass(A1)]. [X2:EClass(A2)]. [size:].
  [num1:A1  ]. [num2:A2  ]. [P1:A1  ]. [P2:A2  ].
    ((let n,mx,v = tr in 
       <n
       , mx
       , g1[v]where tr from ...)
       = (let n,mx,v = tr in 
         <n
         , mx
         , g2[v]where tr from ...)) supposing 
       ((es:EO+(Info). e:E.
           ((e  X1  e  X2)
            ((e  X1)
              (e  X2)
              ((P1[X1(e)]  P2[X2(e)])
                 (num1[X1(e)] = num2[X2(e)])
                 (f1[X1(e)] = f2[X2(e)])
                 (g1[X1(e)] = g2[X2(e)]))))) and 
       (a:A2. R[f2[a];g2[a]]) and 
       (a:A1. R[f1[a];g1[a]])) }

{ Proof }



Definitions occuring in Statement :  es-collect-filter-max: es-collect-filter-max map-class: (f[v] where v from X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b bool: nat_plus: nat: spreadn: spread3 uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] iff: P  Q implies: P  Q and: P  Q set: {x:A| B[x]}  function: x:A  B[x] pair: <a, b> product: x:A  B[x] int: universe: Type equal: s = t
Definitions :  fpf-dom: x  dom(f) so_lambda: x.t[x] fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A uiff: uiff(P;Q) axiom: Ax es-collect-filter-max: es-collect-filter-max pair: <a, b> spreadn: spread3 map-class: (f[v] where v from X) real: grp_car: |g| es-E-interface: E(X) eclass-val: X(e) decide: case b of inl(x) =s[x] | inr(y) =t[y] less_than: a < b rev_implies: P  Q in-eclass: e  X cand: A c B assert: b iff: P  Q implies: P  Q product: x:A  B[x] and: P  Q so_apply: x[s] so_apply: x[s1;s2] uimplies: b supposing a bool: set: {x:A| B[x]}  nat: nat_plus: union: left + right subtype: S  T subtype_rel: A r B eq_atom: eq_atom$n(x;y) atom: Atom apply: f a top: Top es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  record+: record+ event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] isect: x:A. B[x] all: x:A. B[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) int: prop: function: x:A  B[x] uall: [x:A]. B[x] member: t  T equal: s = t universe: Type tactic: Error :tactic,  sqequal: s ~ t es-prior-interface: prior(X) es-interface-at: X@i intensional-universe: IType tag-by: zT fset: FSet{T} isect2: T1  T2 b-union: A  B fpf-cap: f(x)?z record: record(x.T[x]) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T es-collect-filter-max-aux: es-collect-filter-max-aux(X;size;v.num[v];v.P[v];v.f[v]) es-collect-accum: es-collect-accum(X;x.num[x];init;a,v.f[a; v];a.P[a]) es-interface-accum: es-interface-accum(f;x;X) collect_filter: collect_filter() collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]) exists: x:A. B[x] cond-class: [X?Y] void: Void true: True sq_type: SQType(T) false: False spread: spread def Knd: Knd IdLnk: IdLnk Id: Id eq_knd: a = b list: type List sq_stable: SqStable(P) or: P  Q guard: {T} l_member: (x  l) limited-type: LimitedType proper-iseg: L1 < L2 iseg: l1  l2 l_exists: (xL. P[x]) multiply: n * m gt: i > j map: map(f;as) es-locl: (e <loc e') bfalse: ff unit: Unit int_eq: if a=b  then c  else d btrue: tt atom_eq: atomeqn def append: as @ bs locl: locl(a) atom: Atom$n isl: isl(x) can-apply: can-apply(f;x) int_nzero: mapfilter: mapfilter(f;P;L) natural_number: $n alle-lt: e<e'.P[e] es-interface-predecessors: (X)(e) eq_int: (i = j) band: p  q filter: filter(P;l) length: ||as|| es-loc: loc(e) es-first-at: e is first@ i s.t.  e.P[e] infix_ap: x f y es-causl: (e < e') MaAuto: Error :MaAuto,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  RepeatFor: Error :RepeatFor,  CollapseTHENA: Error :CollapseTHENA,  Complete: Error :Complete,  Try: Error :Try,  Repeat: Error :Repeat,  list-max: list-max(x.f[x];L) combination: Combination(n;T) listp: A List nil: [] Unfold: Error :Unfold,  ExRepD: Error :ExRepD,  it: pi2: snd(t) pi1: fst(t) AllHyps: Error :AllHyps,  rationals: add: n + m
Lemmas :  non_neg_length nat_properties pi1_wf_top pi2_wf product_subtype_base list-max-map list_subtype_base map_wf list-max_wf set_subtype_base es-interface-predecessors-equal collect-filter-max-val map-class-val length-map squash_wf int_subtype_base es-interface-predecessors-equal-subtype iff_imp_equal_bool es-loc_wf Id_wf es-E-interface_wf filter_wf length_wf1 es-interface-predecessors_wf es-first-at_wf is-collect-filter-max iff_weakening_uiff alle-lt_wf le_wf band_wf eq_int_wf length_wf_nat list-subtype l_member_wf filter_type assert-eq-id subtype_base_sq bool_subtype_base assert_elim nat_plus_properties mapfilter_wf btrue_wf bfalse_wf unit_wf es-interface-val_wf2 not_wf es-locl_wf pos_length2 pos-length equal-nil-sq-nil subtype_rel_wf uiff_inversion es-interface-extensionality map-class_wf false_wf ifthenelse_wf true_wf top_wf rev_implies_wf sq_stable__assert intensional-universe_wf is-map-class es-interface-subtype_rel2 member_wf eclass_wf in-eclass_wf assert_wf es-interface-top iff_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf event-ordering+_wf bool_wf nat_wf nat_plus_wf eclass-val_wf es-collect-filter-max_wf

\mforall{}[Info,A1,A2,T:Type].  \mforall{}[R:\mBbbZ{}  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[g1:A1  {}\mrightarrow{}  T].  \mforall{}[g2:A2  {}\mrightarrow{}  T].  \mforall{}[f1:A1  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[f2:A2  {}\mrightarrow{}  \mBbbZ{}].
\mforall{}[X1:EClass(A1)].  \mforall{}[X2:EClass(A2)].  \mforall{}[size:\mBbbN{}\msupplus{}].  \mforall{}[num1:A1  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[num2:A2  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[P1:A1  {}\mrightarrow{}  \mBbbB{}].
\mforall{}[P2:A2  {}\mrightarrow{}  \mBbbB{}].
    ((let  n,mx,v  =  tr  in 
          <n,  mx,  g1[v]>  where  tr  from  Collect(size  v's  from  X1    with  maximum  num1[v]  such  that  P1[v]
                                                                                      return  <num1[v],n,v>  with  n  =  maximum  f1[v]))
          =  (let  n,mx,v  =  tr  in 
              <n
              ,  mx
              ,  g2[v]>  where  tr  from  Collect(size  v's  from  X2    with  maximum  num2[v]  such  that  P2[v]
                                                                              return  <num2[v],n,v>  with  n  =  maximum  f2[v])))  supposing 
          ((\mforall{}es:EO+(Info).  \mforall{}e:E.
                  ((\muparrow{}e  \mmember{}\msubb{}  X1  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  X2)
                  \mwedge{}  ((\muparrow{}e  \mmember{}\msubb{}  X1)
                      {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  X2)
                      {}\mRightarrow{}  ((\muparrow{}P1[X1(e)]  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}P2[X2(e)])
                            \mwedge{}  (num1[X1(e)]  =  num2[X2(e)])
                            \mwedge{}  (f1[X1(e)]  =  f2[X2(e)])
                            \mwedge{}  (g1[X1(e)]  =  g2[X2(e)])))))  and 
          (\mforall{}a:A2.  R[f2[a];g2[a]])  and 
          (\mforall{}a:A1.  R[f1[a];g1[a]]))


Date html generated: 2011_08_16-PM-05_33_46
Last ObjectModification: 2010_11_29-PM-06_25_24

Home Index