{ [Info:Type]. [es:EO+(Info)]. [A:Type]. [X:EClass(A)]. [size:].
  [num:A  ]. [P:A  ]. [e:E].
    Collect(size v's from X with maximum num[v] such that P[v])(e) = num[X(e)] 
    supposing e  Collect(size v's from X with maximum num[v]
                            such that P[v]) }

{ Proof }



Definitions occuring in Statement :  es-collect-filter: Collect(size v's from X with maximum num[v] such that P[v]) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b bool: nat_plus: nat: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t
Definitions :  outl: outl(x) eq_bool: p =b q lt_int: i <z j le_int: i z j null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q eq_knd: a = b unit: Unit int_eq: if a=b  then c  else d minus: -n collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]) es-interface-accum: es-interface-accum(f;x;X) collect_filter: collect_filter() bfalse: ff fpf-dom: x  dom(f) mapfilter: mapfilter(f;P;L) list_accum: list_accum(x,a.f[x; a];y;l) suptype: suptype(S; T) squash: T do-apply: do-apply(f;x) pi2: snd(t) bnot: b pi1: fst(t) bor: p q add: n + m it: inr: inr x  inl: inl x  spreadn: spread3 es-filter-image: f[X] natural_number: $n spread: spread def es-collect-accum: es-collect-accum(X;x.num[x];init;a,v.f[a; v];a.P[a]) rev_implies: P  Q exists: x:A. B[x] btrue: tt atom_eq: atomeqn def sqequal: s ~ t or: P  Q append: as @ bs locl: locl(a) Knd: Knd atom: Atom$n isl: isl(x) can-apply: can-apply(f;x) list: type List guard: {T} sq_type: SQType(T) true: True int_nzero: strong-subtype: strong-subtype(A;B) ge: i  j  false: False not: A intensional-universe: IType fpf: a:A fp-B[a] record: record(x.T[x]) real: grp_car: |g| l_member: (x  l) limited-type: LimitedType Id: Id es-interface-predecessors: (X)(e) eq_int: (i = j) band: p  q filter: filter(P;l) length: ||as|| es-loc: loc(e) cand: A c B uiff: uiff(P;Q) es-first-at: e is first@ i s.t.  e.P[e] le: A  B alle-lt: e<e'.P[e] implies: P  Q product: x:A  B[x] and: P  Q iff: P  Q pair: <a, b> void: Void subtype: S  T atom: Atom es-base-E: es-base-E(es) token: "$token" lambda: x.A[x] es-E-interface: E(X) subtype_rel: A r B decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  less_than: a < b int: top: Top so_lambda: x.t[x] all: x:A. B[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ union: left + right set: {x:A| B[x]}  record-select: r.x axiom: Ax apply: f a so_apply: x[s] es-collect-filter: Collect(size v's from X with maximum num[v] such that P[v]) eclass-val: X(e) prop: event_ordering: EO es-E: E bool: uimplies: b supposing a equal: s = t event-ordering+: EO+(Info) universe: Type so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) nat_plus: uall: [x:A]. B[x] member: t  T isect: x:A. B[x] function: x:A  B[x] MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  RepUR: Error :RepUR,  CollapseTHENA: Error :CollapseTHENA,  nat: THENM: Error :THENM,  in-eclass: e  X assert: b AssertBY: Error :AssertBY
Lemmas :  es-E_wf top_wf nat_wf subtype_rel_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-collect-filter_wf es-interface-subtype_rel2 es-interface-top member_wf eclass_wf in-eclass_wf assert_wf bool_wf nat_plus_wf le_wf alle-lt_wf es-first-at_wf iff_weakening_uiff is-collect-filter Id_wf es-loc_wf es-interface-predecessors_wf es-E-interface_wf filter_wf length_wf1 band_wf eq_int_wf eclass-val_wf intensional-universe_wf false_wf ifthenelse_wf true_wf length_wf_nat list-subtype l_member_wf filter_type uiff_inversion assert-eq-id subtype_base_sq bool_subtype_base assert_elim nat_plus_properties btrue_wf es-collect-accum_wf es-filter-image-val2 es-is-filter-image2 bor_wf pi1_wf_top bnot_wf pi2_wf iff_wf rev_implies_wf squash_wf do-apply_wf can-apply_wf es-collect-accum-val mapfilter_wf list_accum_wf assert_functionality_wrt_uiff bfalse_wf unit_wf es-interface-val_wf2 eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot isl_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[size:\mBbbN{}\msupplus{}].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].
\mforall{}[e:E].
    Collect(size  v's  from  X  with  maximum  num[v]  such  that  P[v])(e)  =  num[X(e)] 
    supposing  \muparrow{}e  \mmember{}\msubb{}  Collect(size  v's  from  X  with  maximum  num[v]  such  that  P[v])


Date html generated: 2011_08_16-PM-06_09_53
Last ObjectModification: 2010_11_29-PM-05_10_44

Home Index