{ [Info:Type]. [es:EO+(Info)]. [A:Type]. [X:EClass(A)]. [size:].
  [num:A  ]. [P:A  ]. [e:E].
    uiff(e  Collect(size v's from X with maximum num[v]
                       such that P[v]);(e  X)
     e is first@ loc(e) s.t.  c.||filter(c.((num[X(c)] = num[X(e)])
                                              P[X(c)]);(X)(c))||
      = size
     e'<e.(e'  X)
       ((num[X(e')]  num[X(e)])
          ((num[X(e')] = num[X(e)])  (P[X(e')])))) }

{ Proof }



Definitions occuring in Statement :  es-collect-filter: Collect(size v's from X with maximum num[v] such that P[v]) es-interface-predecessors: (X)(e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-first-at: e is first@ i s.t.  e.P[e] alle-lt: e<e'.P[e] es-loc: loc(e) es-E: E length: ||as|| eq_int: (i = j) band: p  q assert: b bool: nat_plus: nat: uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] le: A  B implies: P  Q and: P  Q lambda: x.A[x] function: x:A  B[x] int: universe: Type equal: s = t filter: filter(P;l)
Definitions :  infix_ap: x f y es-causl: (e < e') btrue: tt atom_eq: atomeqn def sq_type: SQType(T) sqequal: s ~ t append: as @ bs locl: locl(a) atom: Atom$n isl: isl(x) can-apply: can-apply(f;x) es-collect-accum: es-collect-accum(X;x.num[x];init;a,v.f[a; v];a.P[a]) es-interface-accum: es-interface-accum(f;x;X) collect_filter: collect_filter() collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]) Knd: Knd IdLnk: IdLnk es-prior-interface: prior(X) exists: x:A. B[x] es-interface-at: X@i intensional-universe: IType tag-by: zT fset: FSet{T} isect2: T1  T2 b-union: A  B list: type List fpf-cap: f(x)?z record: record(x.T[x]) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T sq_stable: SqStable(P) cand: A c B cond-class: [X?Y] or: P  Q guard: {T} eq_knd: a = b fpf-dom: x  dom(f) int_nzero: real: grp_car: |g| l_member: (x  l) es-E-interface: E(X) limited-type: LimitedType fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) ge: i  j  es-collect-filter: Collect(size v's from X with maximum num[v] such that P[v]) in-eclass: e  X rev_implies: P  Q iff: P  Q so_lambda: x.t[x] less_than: a < b es-locl: (e <loc e') es-interface-predecessors: (X)(e) eclass-val: X(e) so_apply: x[s] eq_int: (i = j) band: p  q filter: filter(P;l) length: ||as|| int: axiom: Ax es-loc: loc(e) Id: Id prop: pair: <a, b> le: A  B not: A implies: P  Q alle-lt: e<e'.P[e] es-first-at: e is first@ i s.t.  e.P[e] void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) bool: set: {x:A| B[x]}  nat: union: left + right nat_plus: subtype: S  T subtype_rel: A r B atom: Atom apply: f a top: Top es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x event_ordering: EO es-E: E lambda: x.A[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  list_accum_pair: list_accum_pair(a,x.f[a; x];b,x.g[b; x];a0;b0;L) do-apply: do-apply(f;x) minus: -n bfalse: ff it: inr: inr x  inl: inl x  spreadn: spread3 es-filter-image: f[X] p-outcome: Outcome rationals: Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  bl-all: (xL.P[x])_b natural_number: $n add: n + m spread: spread def list_accum: list_accum(x,a.f[x; a];y;l) AssertBY: Error :AssertBY,  MaAuto: Error :MaAuto,  Complete: Error :Complete,  Try: Error :Try,  pi2: snd(t) bnot: b pi1: fst(t) bor: p q Unfold: Error :Unfold,  eq_bool: p =b q null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q lt_int: i <z j le_int: i z j unit: Unit collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cons: [car / cdr] l_all: (xL.P[x]) deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) nil: [] map: map(f;as) multiply: n * m int_eq: if a=b  then c  else d THENM: Error :THENM,  mapfilter: mapfilter(f;P;L) hd: hd(l) last: last(L) remove-repeats: remove-repeats(eq;L) select: l[i] divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b l_contains: A  B reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) i-finite: i-finite(I) i-closed: i-closed(I) fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') cut-order: a (X;f) b path-goes-thru: x-f*-y thru i decidable: Dec(P) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) qabs: |r| base: Base ParallelOp: Error :ParallelOp,  RepeatFor: Error :RepeatFor,  so_apply: x[s1;s2] es-pred: pred(e) D: Error :D,  ExRepD: Error :ExRepD,  skip: Error :skip,  es-init: es-init(es;e)
Lemmas :  es-causl_weakening alle-le_wf es-causle-le es-causl_wf member-interface-predecessors es-le_weakening es-locl_transitivity1 es-le_wf member-interface-predecessors-subtype first-at-filter-interface-predecessors1 int_subtype_base implies_functionality_wrt_iff assert_of_bor or_functionality_wrt_uiff es-first-at-implies-first-at length-map list_subtype_base set_subtype_base filter-sq property-from-l_member sq_stable_wf sq_stable__equal list-set-type2 assert_of_eq_int assert_of_band and_functionality_wrt_uiff2 btrue_neq_bfalse decidable_wf decidable__assert l_member-settype l_member_subtype member-mapfilter eq_int_eq_true es-collect-accum-val squash_wf assert_functionality_wrt_uiff mapfilter_wf unit_wf es-interface-val_wf2 nat_properties bl-all_wf non_neg_length subtype_rel_list bool_cases l_all_wf assert-bl-all l_all_wf2 event_ordering_wf not_functionality_wrt_uiff collect-event_wf is-collect-accum assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert pi2_wf bnot_wf pi1_wf_top bor_wf es-collect-accum_wf btrue_wf es-is-filter-image iff_functionality_wrt_iff es-filter-image_wf can-apply_wf bfalse_wf list_accum_pair-sq length-as-accum bl-all-as-accum list_accum_wf assert_wf true_wf in-eclass_wf ifthenelse_wf false_wf es-first-at_wf alle-lt_wf le_wf assert_witness uiff_wf es-locl_wf es-E_wf event-ordering+_inc subtype_rel_self es-base-E_wf bool_wf nat_wf nat_plus_wf event-ordering+_wf eclass_wf not_wf Id_wf es-collect-filter_wf member_wf subtype_rel_wf es-interface-top es-loc_wf es-interface-predecessors_wf es-E-interface_wf filter_wf length_wf1 band_wf eq_int_wf eclass-val_wf rev_implies_wf iff_wf sq_stable__assert intensional-universe_wf es-interface-subtype_rel2 top_wf length_wf_nat list-subtype l_member_wf filter_type iff_weakening_uiff uiff_inversion assert-eq-id subtype_base_sq bool_subtype_base assert_elim nat_plus_properties

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[size:\mBbbN{}\msupplus{}].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].
\mforall{}[e:E].
    uiff(\muparrow{}e  \mmember{}\msubb{}  Collect(size  v's  from  X  with  maximum  num[v]  such  that  P[v]);(\muparrow{}e  \mmember{}\msubb{}  X)
    \mwedge{}  e  is  first@  loc(e)  s.t.    c.||filter(\mlambda{}c.((num[X(c)]  =\msubz{}  num[X(e)])  \mwedge{}\msubb{}  P[X(c)]);\mleq{}(X)(c))||  =  size
    \mwedge{}  \mforall{}e'<e.(\muparrow{}e'  \mmember{}\msubb{}  X)  {}\mRightarrow{}  ((num[X(e')]  \mleq{}  num[X(e)])  \mwedge{}  ((num[X(e')]  =  num[X(e)])  {}\mRightarrow{}  (\muparrow{}P[X(e')]))))


Date html generated: 2011_08_16-PM-06_05_36
Last ObjectModification: 2010_11_30-PM-06_00_55

Home Index