{ [Info:Type]. [es:EO+(Info)]. [A,B:Type]. [X:EClass(A)]. [P:B  ].
  [num:A  ]. [init:B]. [f:B  A  B]. [e:E].
    uiff(e  es-collect-accum(X;x.num[x];init;b,v.f[b;v];b.P[b]);(e  X)
     e is first@ loc(e) s.t. 
       c.collect-event(es;X;num[X(e)];v.num[v];L.P[list_accum(b,v.f[b;v];
                                                              init;
                                                              L)];c)
     e'<e.(e'  X)  (num[X(e')]  num[X(e)])) }

{ Proof }



Definitions occuring in Statement :  es-collect-accum: es-collect-accum(X;x.num[x];init;a,v.f[a; v];a.P[a]) collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-first-at: e is first@ i s.t.  e.P[e] alle-lt: e<e'.P[e] es-loc: loc(e) es-E: E assert: b bool: nat: uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] le: A  B implies: P  Q and: P  Q function: x:A  B[x] universe: Type list_accum: list_accum(x,a.f[x; a];y;l)
Definitions :  nat_plus: l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome dstype: dstype(TypeNames; d; a) fset-member: a  s f-subset: xs  ys fset: FSet{T} fset-closed: (s closed under fs) IdLnk: IdLnk MaName: MaName l_disjoint: l_disjoint(T;l1;l2) consensus-state3: consensus-state3(T) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i consensus-rcv: consensus-rcv(V;A) es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) limited-type: LimitedType permutation: permutation(T;L1;L2) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) bag-size: bag-size(bs) fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) fpf-cap: f(x)?z label: ...$L... t rev_implies: P  Q es-filter-image: f[X] squash: T iff: P  Q cand: A c B quotient: x,y:A//B[x; y] infix_ap: x f y es-causl: (e < e') eq_knd: a = b fpf-dom: x  dom(f) intensional-universe: IType unit: Unit bfalse: ff int_eq: if a=b  then c  else d btrue: tt atom_eq: atomeqn def sq_type: SQType(T) sqequal: s ~ t rationals: or: P  Q append: as @ bs guard: {T} locl: locl(a) Knd: Knd atom: Atom$n filter: filter(P;l) l_member: (x  l) union: left + right strong-subtype: strong-subtype(A;B) ge: i  j  fpf: a:A fp-B[a] real: grp_car: |g| subtype: S  T subtype_rel: A r B atom: Atom es-base-E: es-base-E(es) token: "$token" es-E-interface: E(X) es-interface-predecessors: (X)(e) eq_int: (i = j) mapfilter: mapfilter(f;P;L) top: Top dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ bag: bag(T) record-select: r.x es-collect-accum: es-collect-accum(X;x.num[x];init;a,v.f[a; v];a.P[a]) in-eclass: e  X es-locl: (e <loc e') eclass-val: X(e) apply: f a axiom: Ax es-loc: loc(e) Id: Id prop: event_ordering: EO es-E: E bool: so_lambda: x y.t[x; y] event-ordering+: EO+(Info) universe: Type uall: [x:A]. B[x] uiff: uiff(P;Q) es-first-at: e is first@ i s.t.  e.P[e] collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) alle-lt: e<e'.P[e] all: x:A. B[x] le: A  B not: A implies: P  Q function: x:A  B[x] false: False void: Void uimplies: b supposing a isect: x:A. B[x] ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True member: t  T equal: s = t MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  so_apply: x[s1;s2] list_accum: list_accum(x,a.f[x; a];y;l) so_apply: x[s] es-collect: Collect(X;x.num[x];L.P[L]) pi2: snd(t) pi1: fst(t) pair: <a, b> single-bag: {x} lambda: x.A[x] int: product: x:A  B[x] assert: b length: ||as|| natural_number: $n less_than: a < b and: P  Q list: type List set: {x:A| B[x]}  so_lambda: x.t[x] nat: eclass: EClass(A[eo; e]) tactic: Error :tactic,  Try: Error :Try
Lemmas :  le_wf assert_wf es-locl_wf es-E_wf collect-event_wf assert_witness nat_wf bool_wf eclass_wf es-first-at_wf alle-lt_wf event-ordering+_wf in-eclass_wf member_wf es-interface-top eclass-val_wf es-interface-predecessors_wf Id_wf es-E-interface_wf mapfilter_wf list_accum_wf es-loc_wf es-base-E_wf subtype_rel_self event-ordering+_inc eq_int_wf subtype_rel_wf false_wf ifthenelse_wf true_wf list-subtype l_member_wf uiff_wf assert-eq-id subtype_base_sq bool_subtype_base assert_elim btrue_wf bfalse_wf unit_wf intensional-universe_wf es-interface-val_wf2 length_wf1 es-collect-accum_wf es-interface-subtype_rel2 top_wf uiff_functionality_wrt_uiff2 iff_weakening_uiff assert_functionality_wrt_uiff squash_wf es-collect-accum-es-collect iff_wf rev_implies_wf es-collect_wf pi1_wf pi2_wf single-bag_wf es-filter-image_wf es-interface-subtype_rel es-is-filter-image pi1_wf_top subtype_rel_simple_product bag-size_wf permutation_wf bag_wf and_functionality_wrt_uiff2 is-es-collect decidable_wf decidable__equal_int

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[P:B  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[init:B].
\mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].  \mforall{}[e:E].
    uiff(\muparrow{}e  \mmember{}\msubb{}  es-collect-accum(X;x.num[x];init;b,v.f[b;v];b.P[b]);(\muparrow{}e  \mmember{}\msubb{}  X)
    \mwedge{}  e  is  first@  loc(e)  s.t.    c.collect-event(es;X;num[X(e)];v.num[v];L.P[list\_accum(b,v.f[b;v];
                                                                                                                                                                        init;
                                                                                                                                                                        L)];c)
    \mwedge{}  \mforall{}e'<e.(\muparrow{}e'  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (num[X(e')]  \mleq{}  num[X(e)]))


Date html generated: 2011_08_16-PM-05_28_03
Last ObjectModification: 2011_06_20-AM-01_24_07

Home Index