{ [Info:Type]. [es:EO+(Info)]. [A:Type]. [X:EClass(A)]. [P:{L:A List| 
                                                                 0 < ||L||} 
                                                                 ].
  [num:A  ]. [e:E].
    uiff(e  Collect(X;x.num[x];L.P[L]);(e  X)
     e is first@ loc(e) s.t.  c.collect-event(es;X;num[X(e)];v.num[v];L.P[L];c)
     e'<e.(e'  X)  (num[X(e')]  num[X(e)])) }

{ Proof }



Definitions occuring in Statement :  es-collect: Collect(X;x.num[x];L.P[L]) collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-first-at: e is first@ i s.t.  e.P[e] alle-lt: e<e'.P[e] es-loc: loc(e) es-E: E length: ||as|| assert: b bool: nat: uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] le: A  B implies: P  Q and: P  Q less_than: a < b set: {x:A| B[x]}  function: x:A  B[x] list: type List natural_number: $n universe: Type
Definitions :  IdLnk: IdLnk MaName: MaName consensus-state3: consensus-state3(T) consensus-rcv: consensus-rcv(V;A) es-before: before(e) es-le-before: loc(e) hd: hd(l) last: last(L) remove-repeats: remove-repeats(eq;L) select: l[i] divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b l_contains: A  B reducible: reducible(a) prime: prime(a) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i infix_ap: x f y es-causl: (e < e') es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) valueall-type: valueall-type(T) limited-type: LimitedType cons: [car / cdr] proper-iseg: L1 < L2 iseg: l1  l2 l_exists: (xL. P[x]) multiply: n * m gt: i > j map: map(f;as) unit: Unit bfalse: ff btrue: tt atom_eq: atomeqn def sq_type: SQType(T) sqequal: s ~ t rationals: append: as @ bs locl: locl(a) Knd: Knd atom: Atom$n filter: filter(P;l) int_eq: if a=b  then c  else d nil: [] es-prior-interface: prior(X) exists: x:A. B[x] es-interface-at: X@i intensional-universe: IType tag-by: zT fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B fpf-cap: f(x)?z record: record(x.T[x]) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T sq_stable: SqStable(P) cand: A c B cond-class: [X?Y] union: left + right or: P  Q guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) real: grp_car: |g| fpf: a:A fp-B[a] quotient: x,y:A//B[x; y] strong-subtype: strong-subtype(A;B) ge: i  j  es-collect: Collect(X;x.num[x];L.P[L]) rev_implies: P  Q es-interface-predecessors: (X)(e) eq_int: (i = j) mapfilter: mapfilter(f;P;L) in-eclass: e  X iff: P  Q so_lambda: x.t[x] es-locl: (e <loc e') eclass-val: X(e) so_apply: x[s] int: axiom: Ax prop: pair: <a, b> le: A  B not: A implies: P  Q alle-lt: e<e'.P[e] collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) es-first-at: e is first@ i s.t.  e.P[e] void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) nat: length: ||as|| natural_number: $n bag: bag(T) list: type List less_than: a < b bool: subtype: S  T subtype_rel: A r B atom: Atom apply: f a top: Top es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x event_ordering: EO es-E: E lambda: x.A[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] universe: Type member: t  T event-ordering+: EO+(Info) es-loc: loc(e) Id: Id equal: s = t es-E-interface: E(X) set: {x:A| B[x]}  collect_filter: collect_filter() collect_accm: collect_accm(v.P[v];v.num[v]) inr: inr x  minus: -n list_accum: list_accum(x,a.f[x; a];y;l) pi2: snd(t) isl: isl(x) es-interface-accum: es-interface-accum(f;x;X) es-filter-image: f[X] label: ...$L... t bag-size: bag-size(bs) bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) eq_bool: p =b q lt_int: i <z j le_int: i z j null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b eclass-compose1: f o X Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  RepeatFor: Error :RepeatFor,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  RepUR: Error :RepUR,  inl: inl x  spread: spread def add: n + m tl: tl(l) imax-list: imax-list(L) let: let so_apply: x[s1;s2] pi1: fst(t) listp: A List combination: Combination(n;T) nat_plus: dstype: dstype(TypeNames; d; a) imax: imax(a;b) Try: Error :Try,  CollapseTHENM: Error :CollapseTHENM,  THENM: Error :THENM,  Complete: Error :Complete,  it: D: Error :D
Lemmas :  es-is-filter-image is-interface-accum es-causl_wf decidable__l_member decidable__equal_es-E-interface decidable__le imax-list-lb imax-list-ub cons_member decidable__equal_int member_map member-interface-predecessors es-le_wf es-le_weakening map_wf map_length length_cons length-map set_subtype_base squash_wf event_ordering_wf imax-list_wf isect_subtype_base list_subtype_base union_subtype_base product_subtype_base int_subtype_base collect_accm_invariant es-interface-accum_wf iff_functionality_wrt_iff es-filter-image_wf bag_wf non_neg_length es-interface-subtype_rel list_accum_wf bag-size_wf isl_wf bnot_wf assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert pi2_wf length_nil length_wf2 collect_filter_wf collect_accm_wf decidable__assert assert_wf true_wf in-eclass_wf ifthenelse_wf false_wf es-first-at_wf collect-event_wf alle-lt_wf le_wf assert_witness uiff_wf es-locl_wf es-E_wf event-ordering+_inc subtype_rel_self es-base-E_wf nat_wf bool_wf length_wf1 event-ordering+_wf eclass_wf not_wf Id_wf es-collect_wf member_wf subtype_rel_wf es-interface-top es-loc_wf eclass-val_wf rev_implies_wf iff_wf sq_stable__assert intensional-universe_wf es-interface-subtype_rel2 top_wf es-interface-predecessors_wf es-E-interface_wf mapfilter_wf eq_int_wf list-subtype l_member_wf assert-eq-id subtype_base_sq bool_subtype_base assert_elim btrue_wf bfalse_wf unit_wf es-interface-val_wf2 pos_length2 length_wf_nat pos-length equal-nil-sq-nil mapfilter-pos-length property-from-l_member sq_stable_wf sq_stable__equal sq_stable_from_decidable list-set-type2 l_all_wf l_exists_wf eq_int_eq_true l_member_set2 decidable_wf decidable__equal_Id l_member_subtype l_member-settype es-interface-predecessors-member2

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[P:\{L:A  List|  0  <  ||L||\}    {}\mrightarrow{}  \mBbbB{}].
\mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[e:E].
    uiff(\muparrow{}e  \mmember{}\msubb{}  Collect(X;x.num[x];L.P[L]);(\muparrow{}e  \mmember{}\msubb{}  X)
    \mwedge{}  e  is  first@  loc(e)  s.t.    c.collect-event(es;X;num[X(e)];v.num[v];L.P[L];c)
    \mwedge{}  \mforall{}e'<e.(\muparrow{}e'  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (num[X(e')]  \mleq{}  num[X(e)]))


Date html generated: 2011_08_16-PM-05_26_43
Last ObjectModification: 2011_01_16-PM-10_42_27

Home Index