{ [Info,T,S:Type]. [X,Y:EClass(T)]. [Z:T  EClass(S)].
    (X || Y >tZ[t] = X >tZ[t] || Y >tZ[t]) }

{ Proof }



Definitions occuring in Statement :  parallel-class: X || Y bind-class: X >xY[x] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t
Definitions :  atom_eq: atomeqn def decide: case b of inl(x) =s[x] | inr(y) =t[y] sq_type: SQType(T) sqequal: s ~ t rationals: append: as @ bs guard: {T} locl: locl(a) Knd: Knd atom: Atom$n l_member: (x  l) es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) valueall-type: valueall-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) squash: T sq_stable: SqStable(P) limited-type: LimitedType es-locl: (e <loc e') es-loc: loc(e) Id: Id bool: record-update: r[x := v] eo-restrict: eo-restrict(eo;P) eo-forward: eo.e bag-combine: xbs.f[x] bag-append: as + bs permutation: permutation(T;L1;L2) quotient: x,y:A//B[x; y] nil: [] tag-by: zT rev_implies: P  Q or: P  Q implies: P  Q iff: P  Q record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B union: left + right true: True fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) prop: class-program: ClassProgram(T) fpf-cap: f(x)?z atom: Atom top: Top es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ assert: b record-select: r.x eclass-compose2: eclass-compose2(f;X;Y) subtype: S  T event_ordering: EO event-ordering+: EO+(Info) lambda: x.A[x] so_lambda: x.t[x] pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] axiom: Ax apply: f a so_apply: x[s] parallel-class: X || Y bind-class: X >xY[x] equal: s = t universe: Type uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] function: x:A  B[x] isect: x:A. B[x] MaAuto: Error :MaAuto,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  ORELSE: Error :ORELSE,  es-le: e loc e'  es-E: E set: {x:A| B[x]}  list: type List es-le-before: loc(e) bag: bag(T) member: t  T AssertBY: Error :AssertBY,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  RepUR: Error :RepUR
Lemmas :  es-le_wf subtype_rel_wf bag_wf es-E_wf subtype_rel_self es-base-E_wf es-le-before_wf2 event-ordering+_inc event-ordering+_wf eclass_wf parallel-class_wf member_wf permutation_wf bag-combine_wf iff_wf rev_implies_wf bag-combine-append-right bag-append_wf eo-forward_wf member-eo-forward-E Id_wf es-locl_wf es-loc_wf sq_stable__all sq_stable_from_decidable decidable__es-le assert_wf uiff_wf assert-eq-id subtype_base_sq true_wf squash_wf bag-combine-append-left

\mforall{}[Info,T,S:Type].  \mforall{}[X,Y:EClass(T)].  \mforall{}[Z:T  {}\mrightarrow{}  EClass(S)].
    (X  ||  Y  >t>  Z[t]  =  X  >t>  Z[t]  ||  Y  >t>  Z[t])


Date html generated: 2011_08_16-AM-11_37_34
Last ObjectModification: 2011_06_20-AM-00_30_10

Home Index