Nuprl Lemma : singleton-nat-missing-prop
∀x,y:ℕ.  (↑member-nat-missing(x;singleton-nat-missing(y)) 
⇐⇒ x = y ∈ ℕ)
Proof
Definitions occuring in Statement : 
singleton-nat-missing: singleton-nat-missing(i)
, 
member-nat-missing: member-nat-missing(i;s)
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
equal: s = t ∈ T
Lemmas : 
assert-member-nat-missing, 
from-upto-member-nat, 
false_wf, 
le_wf, 
less_than_wf, 
not_over_and, 
decidable__le, 
decidable__equal_int, 
not-equal-2, 
add_functionality_wrt_le, 
add-swap, 
add-commutes, 
le-add-cancel, 
add-associates, 
assert_wf, 
member-nat-missing_wf, 
singleton-nat-missing_wf, 
sq_stable__le, 
le_weakening, 
less_than_transitivity1, 
less_than_irreflexivity, 
l_member_wf, 
from-upto_wf, 
subtype_rel_list, 
subtype_rel_sets, 
not_wf, 
equal_wf, 
nat_wf
\mforall{}x,y:\mBbbN{}.    (\muparrow{}member-nat-missing(x;singleton-nat-missing(y))  \mLeftarrow{}{}\mRightarrow{}  x  =  y)
Date html generated:
2015_07_17-AM-08_21_29
Last ObjectModification:
2015_04_02-PM-05_43_15
Home
Index