Nuprl Lemma : singleton-nat-missing-prop

x,y:ℕ.  (↑member-nat-missing(x;singleton-nat-missing(y)) ⇐⇒ y ∈ ℕ)


Proof




Definitions occuring in Statement :  singleton-nat-missing: singleton-nat-missing(i) member-nat-missing: member-nat-missing(i;s) nat: assert: b all: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T
Lemmas :  assert-member-nat-missing from-upto-member-nat false_wf le_wf less_than_wf not_over_and decidable__le decidable__equal_int not-equal-2 add_functionality_wrt_le add-swap add-commutes le-add-cancel add-associates assert_wf member-nat-missing_wf singleton-nat-missing_wf sq_stable__le le_weakening less_than_transitivity1 less_than_irreflexivity l_member_wf from-upto_wf subtype_rel_list subtype_rel_sets not_wf equal_wf nat_wf
\mforall{}x,y:\mBbbN{}.    (\muparrow{}member-nat-missing(x;singleton-nat-missing(y))  \mLeftarrow{}{}\mRightarrow{}  x  =  y)



Date html generated: 2015_07_17-AM-08_21_29
Last ObjectModification: 2015_04_02-PM-05_43_15

Home Index