Nuprl Lemma : closure-set-property

B,x:Set{i:l}. ∀Y:x1:Set{i:l} ⟶ Set{i:l}.
  ((∀x1,x2,a1,a2:Set{i:l}.  (seteq(x1;x2)  seteq(a1;a2)  (a1 ∈ x1)  (a2 ∈ x2)))
   (∀x,a:Set{i:l}.  ((a ∈ x)  (∃b:Set{i:l}. ((b ∈ B) ∧ setimage{i:l}(x;b)))))
   (∀z:Set{i:l}. ((z ∈ closure-set(B;Y;x)) ⇐⇒ ∃A:Set{i:l}. ((A ⊆ x) ∧ (z ∈ A)))))


Proof




Definitions occuring in Statement :  closure-set: closure-set(B;Y;x) setimage: setimage{i:l}(x;b) setsubset: (a ⊆ b) Set: Set{i:l} setmem: (x ∈ s) seteq: seteq(s1;s2) all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] exists: x:A. B[x] uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} subtype_rel: A ⊆B cand: c∧ B rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T set-function: set-function{i:l}(s; x.f[x]) implies:  Q all: x:A. B[x]
Lemmas referenced :  setmem-setimages-2 iff_wf closure-set_wf setmem-closure-set setsubset_wf setimages_wf2 setimage_wf exists_wf all_wf Set_wf coSet_wf setimages_wf seteq_wf coSet-mem-Set-implies-Set setmem_wf seteq_inversion set-subtype-coSet seteq_weakening seteq-iff
Rules used in proof :  promote_hyp impliesFunctionality addLevel functionExtensionality universeEquality productEquality cumulativity functionEquality lambdaEquality instantiate dependent_pairFormation independent_isectElimination isectElimination independent_pairFormation sqequalRule applyEquality hypothesisEquality independent_functionElimination productElimination hypothesis because_Cache thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}B,x:Set\{i:l\}.  \mforall{}Y:x1:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}.
    ((\mforall{}x1,x2,a1,a2:Set\{i:l\}.    (seteq(x1;x2)  {}\mRightarrow{}  seteq(a1;a2)  {}\mRightarrow{}  (a1  \mmember{}  Y  x1)  {}\mRightarrow{}  (a2  \mmember{}  Y  x2)))
    {}\mRightarrow{}  (\mforall{}x,a:Set\{i:l\}.    ((a  \mmember{}  Y  x)  {}\mRightarrow{}  (\mexists{}b:Set\{i:l\}.  ((b  \mmember{}  B)  \mwedge{}  setimage\{i:l\}(x;b)))))
    {}\mRightarrow{}  (\mforall{}z:Set\{i:l\}.  ((z  \mmember{}  closure-set(B;Y;x))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}A:Set\{i:l\}.  ((A  \msubseteq{}  x)  \mwedge{}  (z  \mmember{}  Y  A)))))



Date html generated: 2018_07_29-AM-10_10_11
Last ObjectModification: 2018_07_18-PM-10_33_12

Theory : constructive!set!theory


Home Index