Nuprl Lemma : setmem-closure-set
∀B:Set{i:l}. ∀Y:Set{i:l} ⟶ Set{i:l}. ∀x:Set{i:l}.
  ((∀b:Set{i:l}. ((b ∈ B) 
⇒ set-function{i:l}(setimages(b;x); A.Y A)))
  
⇒ (∀z:Set{i:l}
        ((z ∈ closure-set(B;Y;x)) 
⇐⇒ ∃b:coSet{i:l}. ((b ∈ B) ∧ (∃A:coSet{i:l}. ((A ∈ setimages(b;x)) ∧ (z ∈ Y A)))))))
Proof
Definitions occuring in Statement : 
closure-set: closure-set(B;Y;x)
, 
setimages: setimages(A;B)
, 
set-function: set-function{i:l}(s; x.f[x])
, 
Set: Set{i:l}
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
set-function: set-function{i:l}(s; x.f[x])
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
closure-set: closure-set(B;Y;x)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
set-function_wf, 
all_wf, 
seteq_wf, 
iff_wf, 
setimages_functionality, 
seteq_weakening, 
setmem_functionality, 
exists_wf, 
Set_wf, 
setunionfun_wf2, 
seteq-iff, 
setimages_wf2, 
coSet-mem-Set-implies-Set, 
setimages_wf, 
setunionfun_wf, 
coSet_wf, 
setmem_wf, 
set-subtype-coSet, 
setmem-setunionfun
Rules used in proof : 
functionEquality, 
existsLevelFunctionality, 
andLevelFunctionality, 
existsFunctionality, 
productEquality, 
instantiate, 
independent_functionElimination, 
universeEquality, 
setEquality, 
dependent_pairFormation, 
independent_isectElimination, 
functionExtensionality, 
rename, 
setElimination, 
because_Cache, 
isectElimination, 
cumulativity, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
impliesFunctionality, 
independent_pairFormation, 
thin, 
productElimination, 
sqequalHypSubstitution, 
addLevel, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}B:Set\{i:l\}.  \mforall{}Y:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}.  \mforall{}x:Set\{i:l\}.
    ((\mforall{}b:Set\{i:l\}.  ((b  \mmember{}  B)  {}\mRightarrow{}  set-function\{i:l\}(setimages(b;x);  A.Y  A)))
    {}\mRightarrow{}  (\mforall{}z:Set\{i:l\}
                ((z  \mmember{}  closure-set(B;Y;x))
                \mLeftarrow{}{}\mRightarrow{}  \mexists{}b:coSet\{i:l\}.  ((b  \mmember{}  B)  \mwedge{}  (\mexists{}A:coSet\{i:l\}.  ((A  \mmember{}  setimages(b;x))  \mwedge{}  (z  \mmember{}  Y  A)))))))
Date html generated:
2018_07_29-AM-10_10_06
Last ObjectModification:
2018_07_18-PM-09_08_33
Theory : constructive!set!theory
Home
Index