Nuprl Lemma : setmem-setimages-2
∀A,b,x:coSet{i:l}.  ((A ∈ setimages(b;x)) ⇐⇒ setimage{i:l}(A;b) ∧ (A ⊆ x))
Proof
Definitions occuring in Statement : 
setimage: setimage{i:l}(x;b), 
setimages: setimages(A;B), 
setsubset: (a ⊆ b), 
setmem: (x ∈ s), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
function-graph: function-graph{i:l}(A;a.B[a];grph), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
pi1: fst(t), 
cand: A c∧ B, 
guard: {T}, 
squash: ↓T, 
true: True
Lemmas referenced : 
function-graph_wf, 
setmem_wf, 
seteq_wf, 
orderedpair-snd_wf, 
pi1_wf, 
coSet_wf, 
set-image_wf, 
setsubset_wf, 
setmem-setimages, 
setimage-iff, 
setimages_wf, 
setimage_wf, 
orderedpairset_wf, 
setmem_functionality_1, 
orderedpairset_functionality, 
seteq_weakening, 
co-seteq-iff, 
setmem-image, 
seteq_functionality, 
setsubset-iff, 
sigmaset_wf, 
setmem-sigmaset, 
orderedpair-snd_functionality, 
snd-orderedpairset, 
seteq_inversion, 
squash_wf, 
true_wf, 
fun-graph_wf, 
setsubset_functionality, 
function-graph-fun-graph, 
setmem-fun-graph, 
setmem_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
productIsType, 
because_Cache, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality_alt, 
setIsType, 
inhabitedIsType, 
hypothesis, 
functionIsType, 
instantiate, 
cumulativity, 
applyEquality, 
independent_functionElimination, 
dependent_functionElimination, 
promote_hyp, 
independent_pairEquality, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation_alt, 
rename, 
functionExtensionality, 
productEquality, 
dependent_pairEquality_alt, 
hyp_replacement, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
setElimination
Latex:
\mforall{}A,b,x:coSet\{i:l\}.    ((A  \mmember{}  setimages(b;x))  \mLeftarrow{}{}\mRightarrow{}  setimage\{i:l\}(A;b)  \mwedge{}  (A  \msubseteq{}  x))
 Date html generated: 
2020_05_20-PM-01_19_39
 Last ObjectModification: 
2020_01_06-PM-01_24_06
Theory : constructive!set!theory
Home
Index