Nuprl Lemma : setmem-setimages-2

A,b,x:coSet{i:l}.  ((A ∈ setimages(b;x)) ⇐⇒ setimage{i:l}(A;b) ∧ (A ⊆ x))


Proof




Definitions occuring in Statement :  setimage: setimage{i:l}(x;b) setimages: setimages(A;B) setsubset: (a ⊆ b) setmem: (x ∈ s) coSet: coSet{i:l} all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] function-graph: function-graph{i:l}(A;a.B[a];grph) member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: so_apply: x[s] rev_implies:  Q pi1: fst(t) cand: c∧ B guard: {T} squash: T true: True
Lemmas referenced :  function-graph_wf setmem_wf seteq_wf orderedpair-snd_wf pi1_wf coSet_wf set-image_wf setsubset_wf setmem-setimages setimage-iff setimages_wf setimage_wf orderedpairset_wf setmem_functionality_1 orderedpairset_functionality seteq_weakening co-seteq-iff setmem-image seteq_functionality setsubset-iff sigmaset_wf setmem-sigmaset orderedpair-snd_functionality snd-orderedpairset seteq_inversion squash_wf true_wf fun-graph_wf setsubset_functionality function-graph-fun-graph setmem-fun-graph setmem_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut independent_pairFormation sqequalHypSubstitution productElimination thin sqequalRule productIsType because_Cache universeIsType introduction extract_by_obid isectElimination hypothesisEquality lambdaEquality_alt setIsType inhabitedIsType hypothesis functionIsType instantiate cumulativity applyEquality independent_functionElimination dependent_functionElimination promote_hyp independent_pairEquality equalityIstype equalityTransitivity equalitySymmetry dependent_pairFormation_alt rename functionExtensionality productEquality dependent_pairEquality_alt hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed dependent_set_memberEquality_alt applyLambdaEquality setElimination

Latex:
\mforall{}A,b,x:coSet\{i:l\}.    ((A  \mmember{}  setimages(b;x))  \mLeftarrow{}{}\mRightarrow{}  setimage\{i:l\}(A;b)  \mwedge{}  (A  \msubseteq{}  x))



Date html generated: 2020_05_20-PM-01_19_39
Last ObjectModification: 2020_01_06-PM-01_24_06

Theory : constructive!set!theory


Home Index