Nuprl Lemma : co-regext-transitive

a:coSet{i:l}. transitive-set(co-regext(a))


Proof




Definitions occuring in Statement :  co-regext: co-regext(a) transitive-set: transitive-set(s) coSet: coSet{i:l} all: x:A. B[x]
Definitions unfolded in proof :  Wsup: Wsup(a;b) mk-set: f"(T) pi1: fst(t) set-dom: set-dom(s) regextfun: regextfun(f;w) ext-eq: A ≡ B uimplies: supposing a guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] prop: rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q exists: x:A. B[x] top: Top uall: [x:A]. B[x] co-regext: co-regext(a) mk-coset: mk-coset(T;f) subtype_rel: A ⊆B member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  seteq_wf item_mk_set_lemma coW_wf subtype_rel_weakening set-dom_wf coW-ext setmem-iff setsubset_wf all_wf transitive-set-iff coSet_wf setmem_wf regextfun_wf co-seteq-iff mk-coset_wf co-regext_wf setsubset-iff setmem-mk-coset coSet_subtype subtype_coSet
Rules used in proof :  functionExtensionality dependent_pairFormation independent_isectElimination productEquality functionEquality cumulativity lambdaEquality instantiate allFunctionality addLevel because_Cache independent_functionElimination dependent_functionElimination voidEquality voidElimination isect_memberEquality isectElimination thin productElimination sqequalRule sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid introduction hypothesis_subsumption lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cut

Latex:
\mforall{}a:coSet\{i:l\}.  transitive-set(co-regext(a))



Date html generated: 2018_07_29-AM-10_08_01
Last ObjectModification: 2018_07_21-PM-04_36_52

Theory : constructive!set!theory


Home Index