Nuprl Lemma : inductive-set-property
∀[R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ']. ∀bdd:Bounded(x,a.R[x;a]). inductively-defined{i:l}(x,a.R[x;a];inductive-set(bdd))
Proof
Definitions occuring in Statement : 
inductive-set: inductive-set(bdd)
, 
inductively-defined: inductively-defined{i:l}(x,a.R[x; a];s)
, 
bounded-relation: Bounded(x,a.R[x; a])
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
bounded-relation: Bounded(x,a.R[x; a])
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
inductive-set: inductive-set(bdd)
, 
spreadn: spread4, 
so_lambda: λ2x y.t[x; y]
, 
member: t ∈ T
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
least-closed-set-inductively-defined, 
Set_wf, 
closure-set_wf, 
exists_wf, 
all_wf, 
iff_wf, 
setmem_wf, 
pi1_wf, 
equal_wf, 
bounded-relation_wf, 
closure-set-property, 
subtype_rel_self, 
setsubset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
functionExtensionality, 
instantiate, 
cumulativity, 
dependent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionEquality, 
universeEquality, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
independent_pairFormation, 
because_Cache, 
levelHypothesis, 
existsFunctionality, 
andLevelFunctionality, 
productEquality, 
promote_hyp
Latex:
\mforall{}[R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}']
    \mforall{}bdd:Bounded(x,a.R[x;a]).  inductively-defined\{i:l\}(x,a.R[x;a];inductive-set(bdd))
Date html generated:
2018_07_29-AM-10_10_22
Last ObjectModification:
2018_05_30-PM-06_48_09
Theory : constructive!set!theory
Home
Index