Nuprl Lemma : inductive-set-property

[R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ']. ∀bdd:Bounded(x,a.R[x;a]). inductively-defined{i:l}(x,a.R[x;a];inductive-set(bdd))


Proof




Definitions occuring in Statement :  inductive-set: inductive-set(bdd) inductively-defined: inductively-defined{i:l}(x,a.R[x; a];s) bounded-relation: Bounded(x,a.R[x; a]) Set: Set{i:l} uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] bounded-relation: Bounded(x,a.R[x; a]) and: P ∧ Q exists: x:A. B[x] inductive-set: inductive-set(bdd) spreadn: spread4 so_lambda: λ2y.t[x; y] member: t ∈ T so_apply: x[s1;s2] so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q iff: ⇐⇒ Q rev_implies:  Q pi1: fst(t) subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  least-closed-set-inductively-defined Set_wf closure-set_wf exists_wf all_wf iff_wf setmem_wf pi1_wf equal_wf bounded-relation_wf closure-set-property subtype_rel_self setsubset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut introduction extract_by_obid isectElimination lambdaEquality applyEquality hypothesisEquality hypothesis dependent_functionElimination functionExtensionality instantiate cumulativity dependent_pairEquality equalityTransitivity equalitySymmetry independent_functionElimination functionEquality universeEquality addLevel allFunctionality impliesFunctionality independent_pairFormation because_Cache levelHypothesis existsFunctionality andLevelFunctionality productEquality promote_hyp

Latex:
\mforall{}[R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}']
    \mforall{}bdd:Bounded(x,a.R[x;a]).  inductively-defined\{i:l\}(x,a.R[x;a];inductive-set(bdd))



Date html generated: 2018_07_29-AM-10_10_22
Last ObjectModification: 2018_05_30-PM-06_48_09

Theory : constructive!set!theory


Home Index