Nuprl Lemma : natset-subset-natset

n,m:ℕ.  ((natset(n) ⊆ natset(m)) ⇐⇒ n ≤ m)


Proof




Definitions occuring in Statement :  natset: natset(n) setsubset: (a ⊆ b) nat: le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] guard: {T} top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  or: P ∨ Q decidable: Dec(P) nat: rev_implies:  Q uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  Set_wf setmem_wf int_term_value_constant_lemma itermConstant_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int int_subtype_base set_subtype_base subtype_base_sq transitive-set-iff natset-transitive setmem-irreflexive setsubset-iff natset-setmem-natset int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties decidable__lt nat_wf le_wf natset_wf setsubset_wf
Rules used in proof :  because_Cache dependent_set_memberEquality cumulativity instantiate productElimination sqequalRule voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality unionElimination dependent_functionElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n,m:\mBbbN{}.    ((natset(n)  \msubseteq{}  natset(m))  \mLeftarrow{}{}\mRightarrow{}  n  \mleq{}  m)



Date html generated: 2018_05_29-PM-01_49_46
Last ObjectModification: 2018_05_25-AM-00_06_25

Theory : constructive!set!theory


Home Index