Nuprl Lemma : natset-setmem-natset

n,m:ℕ.  ((natset(n) ∈ natset(m)) ⇐⇒ n < m)


Proof




Definitions occuring in Statement :  natset: natset(n) setmem: (x ∈ s) nat: less_than: a < b all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  guard: {T} or: P ∨ Q decidable: Dec(P) rev_implies:  Q so_apply: x[s] lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2x.t[x] nat: uall: [x:A]. B[x] prop: member: t ∈ T exists: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  setmem-irreflexive setmem_functionality seteq_weakening lelt_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat nat_properties int_seg_properties decidable__lt iff_wf all_wf setmem_wf setmem-natset nat_wf less_than_wf le_wf natset_wf seteq_wf int_seg_wf exists_wf
Rules used in proof :  voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation approximateComputation independent_isectElimination unionElimination independent_functionElimination dependent_functionElimination impliesFunctionality allFunctionality addLevel because_Cache dependent_set_memberEquality lambdaEquality sqequalRule hypothesisEquality rename setElimination natural_numberEquality isectElimination extract_by_obid introduction hypothesis thin productElimination sqequalHypSubstitution independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cut

Latex:
\mforall{}n,m:\mBbbN{}.    ((natset(n)  \mmember{}  natset(m))  \mLeftarrow{}{}\mRightarrow{}  n  <  m)



Date html generated: 2018_05_29-PM-01_49_42
Last ObjectModification: 2018_05_24-PM-11_56_57

Theory : constructive!set!theory


Home Index