Nuprl Lemma : natset-setmem-natset
∀n,m:ℕ.  ((natset(n) ∈ natset(m)) 
⇐⇒ n < m)
Proof
Definitions occuring in Statement : 
natset: natset(n)
, 
setmem: (x ∈ s)
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
guard: {T}
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
setmem-irreflexive, 
setmem_functionality, 
seteq_weakening, 
lelt_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
int_seg_properties, 
decidable__lt, 
iff_wf, 
all_wf, 
setmem_wf, 
setmem-natset, 
nat_wf, 
less_than_wf, 
le_wf, 
natset_wf, 
seteq_wf, 
int_seg_wf, 
exists_wf
Rules used in proof : 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
independent_functionElimination, 
dependent_functionElimination, 
impliesFunctionality, 
allFunctionality, 
addLevel, 
because_Cache, 
dependent_set_memberEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
hypothesis, 
thin, 
productElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cut
Latex:
\mforall{}n,m:\mBbbN{}.    ((natset(n)  \mmember{}  natset(m))  \mLeftarrow{}{}\mRightarrow{}  n  <  m)
Date html generated:
2018_05_29-PM-01_49_42
Last ObjectModification:
2018_05_24-PM-11_56_57
Theory : constructive!set!theory
Home
Index