Nuprl Lemma : setmem-natset

n:ℕ. ∀x:Set{i:l}.  ((x ∈ natset(n)) ⇐⇒ ∃i:ℕn. seteq(x;natset(i)))


Proof




Definitions occuring in Statement :  natset: natset(n) Set: Set{i:l} setmem: (x ∈ s) seteq: seteq(s1;s2) int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  assert: b bnot: ¬bb it: unit: Unit bool: 𝔹 bfalse: ff btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) sq_type: SQType(T) emptyset: {} natset: natset(n) or: P ∨ Q decidable: Dec(P) so_apply: x[s] so_lambda: λ2x.t[x] top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a lelt: i ≤ j < k int_seg: {i..j-} guard: {T} exists: x:A. B[x] rev_implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat: subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  int_formula_prop_eq_lemma intformeq_wf decidable__equal_int int_subtype_base assert-bnot bool_cases_sqequal equal_wf lelt_wf decidable__lt or_wf assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_lt_int eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases plus-set_wf emptyset_wf primrec_wf setmem-plus-set not_wf bnot_wf assert_wf lt_int_wf primrec-unroll setmem-mkset-sq primrec0_lemma nat_wf primrec-wf2 less_than_wf set_wf int_seg_subtype_nat int_term_value_subtract_lemma itermSubtract_wf subtract_wf iff_wf all_wf int_formula_prop_not_lemma intformnot_wf decidable__le Set_wf seteq_wf int_seg_wf exists_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_seg_properties le_wf false_wf natset_wf set-subtype-coSet setmem_wf
Rules used in proof :  inrFormation inlFormation equalityElimination promote_hyp orFunctionality addLevel impliesFunctionality equalitySymmetry equalityTransitivity universeEquality cumulativity instantiate unionElimination voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination rename setElimination productElimination because_Cache natural_numberEquality dependent_set_memberEquality sqequalRule hypothesis applyEquality hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid introduction independent_pairFormation thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x:Set\{i:l\}.    ((x  \mmember{}  natset(n))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  seteq(x;natset(i)))



Date html generated: 2018_07_29-AM-10_03_03
Last ObjectModification: 2018_07_11-PM-05_49_21

Theory : constructive!set!theory


Home Index