Nuprl Lemma : natset-transitive
∀n:ℕ. transitive-set(natset(n))
Proof
Definitions occuring in Statement : 
natset: natset(n)
, 
transitive-set: transitive-set(s)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
top: Top
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
natset: natset(n)
Lemmas referenced : 
plus-set-transitive, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
primrec-unroll, 
nat_wf, 
primrec-wf2, 
less_than_wf, 
set_wf, 
int_seg_wf, 
plus-set_wf, 
emptyset_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
subtract_wf, 
decidable__le, 
Set_wf, 
primrec_wf, 
transitive-set_wf, 
emptyset-transitive, 
primrec0_lemma
Rules used in proof : 
cumulativity, 
promote_hyp, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
independent_pairFormation, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
hypothesisEquality, 
natural_numberEquality, 
because_Cache, 
dependent_set_memberEquality, 
instantiate, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}.  transitive-set(natset(n))
Date html generated:
2018_05_29-PM-01_49_35
Last ObjectModification:
2018_05_24-PM-11_31_52
Theory : constructive!set!theory
Home
Index