Nuprl Lemma : natset-transitive

n:ℕtransitive-set(natset(n))


Proof




Definitions occuring in Statement :  natset: natset(n) transitive-set: transitive-set(s) nat: all: x:A. B[x]
Definitions unfolded in proof :  assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat: uall: [x:A]. B[x] prop: implies:  Q top: Top member: t ∈ T all: x:A. B[x] natset: natset(n)
Lemmas referenced :  plus-set-transitive assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf primrec-unroll nat_wf primrec-wf2 less_than_wf set_wf int_seg_wf plus-set_wf emptyset_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat subtract_wf decidable__le Set_wf primrec_wf transitive-set_wf emptyset-transitive primrec0_lemma
Rules used in proof :  cumulativity promote_hyp productElimination equalitySymmetry equalityTransitivity equalityElimination independent_pairFormation intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination hypothesisEquality natural_numberEquality because_Cache dependent_set_memberEquality instantiate isectElimination setElimination rename hypothesis voidEquality voidElimination isect_memberEquality dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  transitive-set(natset(n))



Date html generated: 2018_05_29-PM-01_49_35
Last ObjectModification: 2018_05_24-PM-11_31_52

Theory : constructive!set!theory


Home Index