Nuprl Lemma : cc-fst_wf
∀[Gamma:CubicalSet]. ∀[A:{Gamma ⊢ _}].  (p ∈ Gamma.A ⟶ Gamma)
Proof
Definitions occuring in Statement : 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cc-fst: p
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
cube-context-adjoin: X.A
, 
I-cube: X(I)
, 
top: Top
, 
functor-ob: ob(F)
, 
cube-set-restriction: f(s)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
implies: P 
⇒ Q
Lemmas referenced : 
cube-set-map-is, 
cube-context-adjoin_wf, 
pi1_wf_top, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
name-morph_wf, 
all_wf, 
equal_wf, 
cube-set-restriction_wf, 
cubical-type_wf, 
cubical-set_wf, 
ob_pair_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
lambdaEquality, 
lambdaFormation, 
because_Cache, 
functionEquality, 
applyEquality, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
productElimination, 
independent_pairEquality, 
independent_functionElimination
Latex:
\mforall{}[Gamma:CubicalSet].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (p  \mmember{}  Gamma.A  {}\mrightarrow{}  Gamma)
Date html generated:
2017_10_05-AM-10_13_26
Last ObjectModification:
2017_07_28-AM-11_18_53
Theory : cubical!sets
Home
Index