Nuprl Lemma : cc-fst_wf

[Gamma:CubicalSet]. ∀[A:{Gamma ⊢ _}].  (p ∈ Gamma.A ⟶ Gamma)


Proof




Definitions occuring in Statement :  cc-fst: p cube-context-adjoin: X.A cubical-type: {X ⊢ _} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cc-fst: p all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: cube-context-adjoin: X.A I-cube: X(I) top: Top functor-ob: ob(F) cube-set-restriction: f(s) pi2: snd(t) pi1: fst(t) implies:  Q
Lemmas referenced :  cube-set-map-is cube-context-adjoin_wf pi1_wf_top I-cube_wf list_wf coordinate_name_wf name-morph_wf all_wf equal_wf cube-set-restriction_wf cubical-type_wf cubical-set_wf ob_pair_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality lambdaEquality lambdaFormation because_Cache functionEquality applyEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality dependent_functionElimination voidElimination voidEquality productElimination independent_pairEquality independent_functionElimination

Latex:
\mforall{}[Gamma:CubicalSet].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (p  \mmember{}  Gamma.A  {}\mrightarrow{}  Gamma)



Date html generated: 2017_10_05-AM-10_13_26
Last ObjectModification: 2017_07_28-AM-11_18_53

Theory : cubical!sets


Home Index