Nuprl Lemma : csm-ap-comp-term
∀[Gamma,Delta,Z:CubicalSet]. ∀[s1:Z ⟶ Delta]. ∀[s2:Delta ⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[t:{Gamma ⊢ _:A}].
  ((t)s2 o s1 = ((t)s2)s1 ∈ {Z ⊢ _:(A)s2 o s1})
Proof
Definitions occuring in Statement : 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:AF}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
csm-comp: G o F, 
cube-set-map: A ⟶ B, 
cubical-set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
csm-comp: G o F, 
csm-ap-term: (t)s, 
type-cat: TypeCat, 
trans-comp: t1 o t2, 
csm-ap: (s)x, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
compose: f o g, 
implies: P ⇒ Q, 
prop: ℙ, 
cubical-term: {X ⊢ _:AF}
Lemmas referenced : 
cubical-term-equal2, 
csm-ap-type_wf, 
csm-comp_wf, 
csm-ap-term_wf, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
cubical-term_wf, 
cubical-type_wf, 
cube-set-map_wf, 
ap_mk_nat_trans_lemma, 
cat_comp_tuple_lemma, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
applyEquality, 
sqequalRule, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
axiomEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setElimination, 
rename, 
functionExtensionality
Latex:
\mforall{}[Gamma,Delta,Z:CubicalSet].  \mforall{}[s1:Z  {}\mrightarrow{}  Delta].  \mforall{}[s2:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
\mforall{}[t:\{Gamma  \mvdash{}  \_:A\}].
    ((t)s2  o  s1  =  ((t)s2)s1)
Date html generated:
2017_10_05-AM-10_13_12
Last ObjectModification:
2017_07_28-AM-11_18_45
Theory : cubical!sets
Home
Index